Ching-Lung Fan | Deep Learning | Best Researcher Award

Assoc. Prof. Dr. Ching-Lung Fan | Deep Learning | Best Researcher Award

Associate Professor, ROC Military Academy, Taiwan

Ching-Lung Fan is an associate professor in Civil Engineering at the Republic of China Military Academy. He completed his Ph.D. in 2019 from the National Kaohsiung University of Science and Technology. His professional journey reflects a strong dedication to advancing technology in the construction and civil engineering sectors, particularly through the application of machine learning and deep learning methods. 🏫

Publication Profile

Education

Dr. Fan holds a Master of Science (M.S.) from National Taiwan University (2006) and a Ph.D. from National Kaohsiung University of Science and Technology (2019). His academic background underscores his commitment to both theoretical and practical contributions to the field. 🎓

Experience

Dr. Fan started his academic career as an assistant professor at the Republic of China Military Academy in January 2019 and was promoted to associate professor in June 2022. His teaching and research experience has significantly impacted the study of civil engineering, especially through the integration of machine learning and data mining. 🏢

Awards and Honors

Ching-Lung Fan has received several prestigious awards, including the Phi Tau Phi Scholastic Honor (2019), Outstanding Paper Award (2021), Excellent Paper Award (2022), and Best Researcher Award (2024). In 2023, he was honored with membership in Sigma Xi, an esteemed scientific organization. 🏅

Research Focus

Dr. Fan’s research interests are primarily centered around machine learning, deep learning, data mining, construction performance evaluation, and risk management. His work integrates cutting-edge computational methods with civil engineering applications to enhance the quality and efficiency of construction projects. 🤖📊

Conclusion

Dr. Fan’s innovative contributions to civil engineering, particularly in the realm of AI-driven solutions, continue to shape the future of construction and infrastructure development. His ongoing research and recognition in the academic community highlight his expertise and impact in the field. 🌟

Publications

 Integrating image processing technology and deep learning to identify crops in UAV orthoimages. CMC-Computers, Materials & Continua. (Accepted).

Predicting the construction quality of projects by using hybrid soft computing techniques. CMES-Computer Modeling in Engineering & Sciences. (Accepted).

 Evaluation model for crack detection with deep learning—Improved confusion matrix based on linear features. Journal of Construction Engineering and Management (ASCE), 151(3): 04024210. (SCI).

 Evaluating the performance of Taiwan airport renovation projects: An application of multiple attributes intelligent decision analysis. Buildings, 14(10): 3314. (SCI).

Deep neural networks for automated damage classification in image-based visual data of reinforced concrete structures. Heliyon, 10(19): e38104. (SCI).

Multiscale feature extraction by using convolutional neural network: Extraction of objects from multiresolution images of urban areas. ISPRS International Journal of GeoInformation, 13(1): 5. (SCI).

Ground surface structure classification using UAV remote sensing images and machine learning algorithms. Applied Geomatics, 15: 919-931. (ESCI).

 Using convolutional neural networks to identify illegal roofs from unmanned aerial vehicle images. Architectural Engineering and Design Management, 20(2): 390-410. (SCI).

Evaluation of machine learning in recognizing images of reinforced concrete damage. Multimedia Tools and Applications, 82: 30221-30246. (SCI).

 Supervised machine learning–Based detection of concrete efflorescence. Symmetry, 14(11): 284. (SCI).

 

Lukas Petersson | Artificial Intelligence | Best Researcher Award

Mr. Lukas Petersson | Artificial Intelligence | Best Researcher Award

Founder, Vectorview, United States

Lukas Petersson is a passionate AI and robotics researcher, currently serving as the CTO and Co-founder of Vectorview in San Francisco. With a strong background in software engineering, machine learning, and robotics, Lukas has contributed significantly to AI safety evaluations for major labs such as Anthropic. He has a track record of successful funding, securing $2.2M in capital, and conducting groundbreaking research on agentic capabilities of LLMs. 🌟🤖💡

Publication Profile

Google Scholar

Education:

Lukas is pursuing his M.Sc. and B.Sc. in Engineering Physics and Engineering Mathematics at Lund University, where he has achieved an impressive GPA of 4.9/5 and 5.0/5. He also spent a year at ETH Zurich focusing on Machine Learning and Robotics. 🎓📚

Experience:

Lukas has gathered diverse experience across top organizations such as Google, Disney Research, CommaAI, and the European Space Agency. He has contributed to AI research, robotics, and autonomy engineering, with notable achievements like developing RL algorithms for social robotic interaction and automating data analysis at Google. He has also been part of impactful projects like the viral robot developed at Disney Research. 🏢🧑‍💻🚀

Research Interests:

Lukas’s research interests lie at the intersection of AI Safety, Machine Learning, Robotics, and Autonomous Systems. His work focuses on improving agentic capabilities of large language models (LLMs) and exploring the application of Reinforcement Learning (RL) for social robots. 🤖🔬🌍

Awards:

Lukas’s work has been recognized in the fields of robotics and AI, contributing to significant advancements in safety and performance. He has excelled in competitive programming and autonomous vehicle development, receiving awards and recognition for his innovative approach to solving real-world challenges. 🏆🌟

Publications:

“Taming the Machine” (2023): Contributed research on AI Safety for a book discussing the future of machine learning and its societal impacts. 📚🧠

“MBSE” (2021): Published and presented a paper on Model-Based Systems Engineering at a conference, focusing on advanced methodologies in systems engineering. 📄🔧