Prof. Erping Zhao | Neural Networks | Best Researcher Award

Prof. Erping Zhao | Neural Networks | Best Researcher Award

Master, Xizang Minzu University, China.

Erping Zhao, originally from Binxian County in Shaanxi Province, is a highly respected professor at Xizang Minzu University, where he also mentors master’s students. With a career rooted in academia and research, Dr. Zhao has emerged as a distinguished figure in the field of computer science. After earning his master’s degree in software engineering from Xidian University in 2006, he embarked on a teaching journey that has spanned nearly two decades. His academic pursuits have taken him to China Renmin University as a visiting scholar in Big Data and Knowledge Graphs. Currently, he holds several influential positions, including outstanding member of the China Computer Association, executive member of the Information System Committee, and expert evaluator in the national graduate education monitoring database.

Publication Profile

ORCID

🎓 Education Background

Dr. Zhao completed his B.S. in Computer Application from Xidian University in 1999. He later returned to the same university and earned his M.S. in Software Engineering in April 2006. His passion for continuous learning led him to further expand his research capabilities as a visiting scholar in 2016 at China Renmin University, focusing on Big Data and Knowledge Graphs.

💼 Professional Experience

Beginning his career in the industry, Erping Zhao worked at Dang Tang Telecom Co., Ltd. from 1999 to 2003. Transitioning into academia, he joined the College of Information Engineering at Xizang Minzu University in June 2006. Over the years, he has risen through the ranks to become a professor, having led multiple research projects funded by both provincial and national bodies. His leadership has been instrumental in the successful completion of Natural Science Foundation projects and key technology initiatives for Tibet.

🏆 Awards and Honors

Throughout his distinguished career, Dr. Zhao has received numerous accolades. These include the Third Prize in the Tibet Sub-Competition of the 2024 “Data Elements ×” Competition, the Xizang Autonomous Region Teaching Achievement Award, and the Xianyang Excellent Academic Paper Award. These honors reflect his commitment to both academic excellence and innovation in applied research.

🔬 Research Focus

Dr. Zhao’s research interests lie in the rapidly advancing domains of Natural Language Processing, Knowledge Graphs, Deep Learning, Intelligent Q&A and Recommendation Systems, and Large Language Models. He has made significant contributions in integrating big data analysis with knowledge representation, and his publications reflect a blend of theory and real-world applications.

🔚 Conclusion

In summary, Professor Erping Zhao stands out as a dedicated academician and accomplished researcher with profound contributions to artificial intelligence and computer science. His blend of academic insight, industrial experience, and scholarly recognition positions him as a thought leader in his field.

📚 Top Publications 

  1. A multi-head attention-based bidirectional gated recurrent unit and multilayer perceptron for relation extraction model
     2025 — Engineering Applications of Artificial Intelligence
     Cited by: 7 articles

  2. Aspect-Level Sentiment Analysis Based on Vector Projection and Adversarial Contrastive Learning
     2025 — Expert Systems with Applications
     Cited by: 4 articles

  3. A knowledge graph completion model based on weighted fusion description information and transform of the dimension and the scale
     2025 — Applied Intelligence
     Cited by: 3 articles

  4. Multi-Level Attention Based Coreference Resolution With Gated Recurrent Unit and Convolutional Neural Networks
     2023 — IEEE Access
     Cited by: 11 articles

  5. A Knowledge Graph Completion Method Based on Fusing Association Information
     2022 — IEEE Access
     Cited by: 18 articles

 

Prof. Dr. Mohamed Maher Ben Ismail | Artificial Intelligence | Best Researcher Award

Prof. Dr. Mohamed Maher Ben Ismail | Artificial Intelligence | Best Researcher Award

Prof. Dr. Mohamed Maher Ben Ismail, King Saud University, Saudi Arabia

Dr. Mohamed Maher Ben Ismail is a distinguished full professor in the Computer Science Department at the College of Computer and Information Sciences, King Saud University, Riyadh, Saudi Arabia . With a prolific academic and research background spanning over two decades, Dr. Ben Ismail is recognized for his contributions in artificial intelligence, image processing, and data mining. His work bridges theory and practical applications in machine learning and statistical modeling, making him a leading voice in his field 🌐📚.

Professional Profile

Google Scholar

Scopus

🎓 Education Background

Dr. Ben Ismail holds a Ph.D. in Computer Engineering and Computer Science from the University of Louisville, USA (2011) 🇺🇸, where his dissertation focused on image annotation and retrieval using multi-modal feature clustering. He also earned a Master’s in Automatic and Signal Processing and a Bachelor’s in Electrical Engineering from the National School of Engineering of Tunis, Tunisia 🇹🇳. His early academic journey was distinguished by excellence in mathematics, physics, and competitive engineering entrance exams 🧠📘.

🧑‍🏫 Professional Experience

Dr. Ben Ismail currently serves as a Full Professor at King Saud University (2021–present), following roles as Associate Professor (2017–2021) and Assistant Professor (2011–2017). Previously, he worked as a Design & Development Engineer at STMicroelectronics, Tunisia, and as a Graduate Research Assistant at the University of Louisville’s Multimedia Research Lab, where he pioneered work on CBIR systems and integrated machine learning approaches. His academic role includes supervising thesis work, lecturing across AI, ML, algorithm design, and image processing 💼👨‍🏫.

🏆 Awards and Honors

Throughout his career, Dr. Ben Ismail has received numerous accolades, including the Best Faculty Member Award (2017) at King Saud University, the Graduate Dean’s Citation Award (2011), and the IEEE Outstanding CECS Student Award (2011) 🥇. He is also a member of the Golden Key International Honor Society and received early recognition through his promotion at STMicroelectronics and various graduate assistantships and scholarships 🎖️.

🔬 Research Focus

Dr. Ben Ismail’s research interests lie in Artificial Intelligence, Machine Learning, Pattern Recognition, Image Processing, Temporal Data Mining, and Information Fusion 🤖🧠. His work emphasizes robust statistical modeling and intelligent systems design, often applied to domains like IoT security, brain tumor detection, real estate prediction, and hyperspectral imaging. His prolific publication record in top-tier journals and conferences highlights his continuous contributions to advanced computational techniques and interdisciplinary innovation 📊📈.

📌 Conclusion

With a solid educational foundation, impactful research contributions, and extensive teaching experience, Dr. Mohamed Maher Ben Ismail stands as a key figure in advancing AI-driven solutions in academia and industry. His dedication to excellence and innovation marks him as a thought leader and an inspirational academic voice in the global computer science community 🌟🧑‍🔬.

📚 Top Publications Notes

  1. YOLO-Act: Unified Spatiotemporal Detection of Human Actions Across Multi-Frame Sequences
    📅 Published in: Sensors, 2025
    🔍 Cited by: 12 articles (as of mid-2025)
    🧠 Highlights: Proposes a YOLO-based system for recognizing actions across video frames.

  2. MRI-Based Meningioma Firmness Classification Using an Adversarial Feature Learning Approach
    📅 Published in: Sensors, 2025
    🔍 Cited by: 9 articles
    🧠 Highlights: Enhances brain tumor classification using deep adversarial networks.

  3. RobEns: Robust Ensemble Adversarial Machine Learning Framework for Securing IoT Traffic
    📅 Published in: Sensors, 2024
    🔍 Cited by: 18 articles
    🔐 Highlights: Focuses on adversarial ML methods to enhance IoT network security.

  4. Skin Cancer Recognition Using Unified Deep Convolutional Neural Networks
    📅 Published in: Cancers, 2024
    🔍 Cited by: 25 articles
    🧬 Highlights: Applies CNNs to early skin cancer detection using medical images.

  5. A Deep Learning Approach for Brain Tumor Firmness Detection Based on Five YOLO Versions
    📅 Published in: Computation, 2024
    🔍 Cited by: 14 articles
    💡 Highlights: Compares YOLOv3 to YOLOv7 models for brain scan interpretation.

  6. Toward an Improved Machine Learning-based Intrusion Detection for IoT Traffic
    📅 Published in: Computers, 2023
    🔍 Cited by: 20 articles
    🔒 Highlights: Develops a secure ML framework to prevent intrusions in smart devices.

  7. Simultaneous Deep Learning-based Classification and Regression for Company Bankruptcy Prediction
    📅 Published in: Journal of Business & Economic Management, 2023
    🔍 Cited by: 8 articles
    💼 Highlights: Innovative DL model integrating financial classification with regression.

  8. Novel Dual-Constraints Based Semi-Supervised Deep Clustering Approach
    📅 Published in: Sensors, 2025
    🔍 Cited by: 6 articles
    📊 Highlights: Enhances clustering accuracy using semi-supervised constraints in DL.

  9. Better Safe than Never: A Survey on Adversarial Machine Learning Applications towards IoT Environment
    📅 Published in: Applied Sciences, 2023
    🔍 Cited by: 22 articles
    🔍 Highlights: Comprehensive survey exploring adversarial ML attacks and defense for IoT.

  10. Detecting Insults on Social Network Platforms Using a Deep Learning Transformer-Based Model
    📅 Published in: IGI Global Book Chapter, 2025
    🔍 Cited by: 11 articles
    🌐 Highlights: Uses transformer models to detect hate speech and insults online.