Farzaneh Zareian | Machine Learning | Best Researcher Award

Ms. Farzaneh Zareian | Machine Learning | Best Researcher Award

Ms. Farzaneh Zareian – Graduate Student, Amirkabir University of Technology, Iran.

Farzaneh Zareian is a dynamic civil engineering researcher with a specialization in earthquake engineering and machine learning applications in structural analysis. Holding a master’s degree from the prestigious Amirkabir University of Technology and a bachelor’s from the University of Tehran, she has consistently demonstrated academic excellence and innovation. Farzaneh has contributed significantly through teaching, research, and scholarly publications in seismic assessment and structural resilience. With experience in AI-powered modeling, fragility curve generation, and passive control systems, she stands at the intersection of engineering and intelligent computation, contributing to safer, more resilient infrastructure in seismic-prone regions.

Publication Profile

Google Scholar

🎓 Education Background

Farzaneh Zareian earned her M.Sc. in Civil Engineering (Earthquake Engineering) from Amirkabir University of Technology, Tehran (2020–2023) with an excellent-rated thesis supervised by Dr. Mehdi Banazadeh. Her research focused on nonlinear dynamic response estimation using machine learning. Prior to that, she completed her B.Sc. in Civil Engineering at the University of Tehran (2016–2020), with coursework emphasizing earthquake engineering, bridge design, and hydraulic structures. Her academic journey highlights a deep commitment to blending structural theory with advanced computational methods, maintaining strong GPAs and securing top ranks in national entrance exams at both undergraduate and postgraduate levels.

💼 Professional Experience

Farzaneh Zareian has accumulated valuable academic experience through teaching and research roles. She worked as a sessional instructor for the “Soft Computing” course at Shahab Danesh University during 2023–2024 and currently serves as a Teaching Assistant in “Theory of Structural Analysis” at Amirkabir University of Technology. Her practical engagements also include academic projects involving seismic hazard analysis, vulnerability assessment, and AI-driven structural modeling. These roles reflect her dual strength as both an educator and practitioner in earthquake-resistant design and computational engineering, making her a well-rounded and impactful civil engineering professional.

🏅 Awards and Honors

Farzaneh’s academic excellence has been widely recognized through several honors. In 2024, she was selected as a distinguished Ph.D. candidate by Amirkabir University’s Committee of Exceptional Talents. She ranked 1st among her peers in the Earthquake Engineering master’s program in 2022 and was among the top 0.2% in both bachelor’s and master’s national entrance exams in 2016 and 2020, respectively. Additionally, she was the top high school student at NODET. These accolades reflect her exceptional dedication, intelligence, and potential as a future leader in structural and earthquake engineering research.

🔬 Research Focus

Farzaneh’s research focuses on AI-enabled structural design and optimization, particularly in seismic contexts. She specializes in applying machine learning and physics-informed models to estimate structural responses, assess risk and reliability, and enhance infrastructure resilience. Her projects include probabilistic seismic hazard analysis, fragility curve generation, and the use of deep learning for crack detection in masonry. She is deeply committed to integrating data-driven approaches with classical civil engineering practices to improve safety, sustainability, and performance of critical infrastructure under seismic hazards.

🧾 Conclusion

Farzaneh Zareian exemplifies the emerging generation of civil engineers who are leveraging artificial intelligence to redefine structural safety and resilience. Her academic accomplishments, hands-on project experiences, teaching engagements, and scholarly contributions highlight a well-rounded professional profile. As she progresses toward doctoral research, her innovative mindset and strong foundation in both theory and practice make her a prime candidate for research excellence in AI-integrated earthquake engineering. With her interdisciplinary approach, she is poised to make impactful contributions to the global civil and seismic engineering community.

📚 Publication Top Notes

 Prediction of nonlinear dynamic responses and generation of seismic fragility curves for steel moment frames using boosting machine learning techniques
📅 Year: 2024 (Nov.)
📘 Journal: Computers & Structures
🔢 Cited by: 1

 Machine learning-based seismic risk assessment of steel moment structures: a reliability analysis framework
📅 Year: In Preparation (Expected 2025)
📘 Journal: Engineering Structures
🔢 Cited by:

Mr. Lurui Wang | Machine Learning | Best Researcher Award

Mr. Lurui Wang | Machine Learning | Best Researcher Award

Mr. Lurui Wang, Univeristy of toronto Mind lab, Canada.

Lurui Wang is a passionate and innovative researcher in the field of mechanical engineering, with a strong interdisciplinary interest in robotics, artificial intelligence, and sensor technologies. Currently pursuing his Bachelor of Science in Mechanical Engineering at the University of Toronto, he combines practical experience, academic excellence, and a drive for impactful innovation. With an impressive GPA of 3.75 and extensive involvement in machine learning and design projects, Lurui has contributed to multiple high-impact research areas such as cold spray coatings, aerosol systems for medical applications, and intelligent object detection models. His leadership skills are evident through various team-led design and AI projects, as well as his industry internship with Baylis Med Tech, where he made significant technical contributions.

Professional Profile

ORCID

🎓 Education Background

Lurui Wang began his academic journey at the University of Toronto in September 2020 and is expected to graduate in April 2025 with a Bachelor of Science in Mechanical Engineering. His curriculum includes key subjects such as Mechanical Engineering Design, Mechatronics, Fluid Mechanics, and Solid Mechanics, enhanced by the Professional Experience Year (PEY Co-op). He also undertook summer courses at Xiamen University in accounting, microeconomics, and macroeconomics, reflecting his interdisciplinary interests.

💼 Professional Experience

Lurui’s hands-on experience spans several high-impact projects and internships. He has been involved in developing deep learning models for acoustic emission sensor data in cold spray coatings, advanced object detection through SparseNetYOLOv8, and designing heater systems for aerosol deposition studies. Notably, at Baylis Med Tech, he served as an Equipment Engineer, leading the design of a cable coiling machine, improving manufacturing efficiency, and reducing operational costs. He has also led student design projects in robotics, AI traffic signal detection, and mechanical systems such as gearboxes and milling machines, showcasing his engineering versatility.

🏆 Awards and Honors

Lurui Wang’s dedication has been recognized through multiple accolades, including the Certified SolidWorks Professional (CSWP) in 2022 and Associate (CSWA) in 2021. In 2024, he earned a Kaggle Silver Medal in the “Eedi – Mining Misconceptions in Mathematics” competition, ranking among the top 67 out of 1,446 participants, underscoring his strong data science capabilities.

🔬 Research Focus

Lurui’s research focuses on the intersection of mechanical systems, intelligent computation, and biomimicry. His works explore robotic optimization using insect-inspired mechanisms, machine learning integration in engineering systems, sensor fusion for predictive manufacturing, and vision-based detection models using YOLO architecture enhancements. His projects aim to address real-world challenges in autonomous systems, medical technology, and intelligent manufacturing, driven by simulation tools, programming, and algorithmic innovation.

🔚 Conclusion

Lurui Wang stands out as a dynamic and driven early-career researcher, blending engineering design, data science, and real-world application with academic rigor. His proactive approach, technical skillset, and collaborative mindset mark him as a rising talent in the fields of intelligent mechanical systems and applied machine learning.

📚 Top Publications with Notes

  1. Design and Optimization of Monopod Robots for Continuous Vertical Jumping: A Novel Hopping Mechanism Inspired by Froghoppers and Grasshoppers
    • Authors: Suhang Xu, Feihan Li, Lurui Wang, Yujing Fu

    • Published Year: 2024

    • Journal: Proceedings of MLPRAE 2024

    • DOI: 10.1145/3696687.3696695

  2. SparseNetYOLOv8: Integrating Vision Transformers and Dynamic Probing for Enhanced Sparse Object Detection
    • Authors: Lurui Wang, Yanfeng Lyu

    • Published Year: 2024

    • Conference: 2024 International Conference on Computer Vision and Image Processing (CVIP 2024)

    • DOI: 10.1117/12.3058039

  3. A Machine Learning Approach for Predicting Particle Spatial, Velocity, and Temperature Distributions in Cold Spray Additive Manufacturing
    • Authors: Lurui Wang, Mehdi Jadidi, Ali Dolatabadi

    • Published Year: 2025

    • Conference: Applied Sciences

    • DOI: 10.3390/app15126418