Adisu Makeyaw | Power System | Best Researcher Award

Mr. Adisu Makeyaw | Power System | Best Researcher Award

Mr. Adisu Makeyaw , Beijing Jiaotong University , China.

Adisu Makeyaw is a promising young researcher and graduate student at Beijing Jiaotong University, focusing on advanced power systems and railway electrification. With a solid background in electrical engineering and a passion for solving real-world infrastructure problems, Adisu has emerged as a dedicated contributor in the field of smart energy systems. His research has emphasized energy storage, regenerative braking, and stray current mitigation in electrified railways. Through his collaborations with industry partners like the State Grid Shanghai Electric Power Research Institute, he bridges the gap between academic theory and practical solutions for urban power system stability and efficiency.

Publication Profile

ORCID

🎓 Education Background

Adisu Makeyaw pursued his undergraduate and graduate education in electrical and power engineering with a specialization in railway electrification systems. Currently enrolled as a graduate student at Beijing Jiaotong University, he has developed technical expertise in modeling and simulation, especially regarding energy storage systems and control strategies. His thesis, titled “Research on Energy Storage System Scheme of Electrified Railway Traction Substation,” demonstrates his capability in addressing complex engineering challenges. Throughout his academic journey, Adisu has combined analytical rigor with a focus on practical implementation, laying a strong foundation for innovative solutions in the field of sustainable energy.

🧑‍💼 Professional Experience

Though still a student, Adisu Makeyaw has gained early professional recognition through impactful research collaborations. He has worked closely with the State Grid Shanghai Electric Power Research Institute, contributing to transformer DC bias mitigation solutions in metro systems. His work integrates simulation, field data, and theoretical analysis to design real-time monitoring and suppression methods. These experiences not only enhanced his engineering acumen but also strengthened his ability to manage industry-academia collaboration. Adisu continues to expand his professional portfolio by engaging in research that influences policy and technical standards in power distribution networks and urban rail infrastructure.

🏆 Awards and Honors

While formal awards are currently pending, Adisu Makeyaw’s academic contributions are already being acknowledged in reputable scientific platforms. His recent publication in the Energies journal showcases his innovative thinking and has gained scholarly attention. As a member (pending) of the IEEE, he is positioning himself among global professionals in electrical engineering. His impactful work in DC bias mitigation and energy storage system design reflects a commitment to research excellence that is well-aligned with recognition such as the Best Researcher Award. With growing citations and collaboration with leading institutes, Adisu is on a clear trajectory for prestigious accolades in the near future.

🔬 Research Focus

Adisu’s research centers around regenerative braking, energy storage systems, stray current mitigation, and transformer DC bias phenomena within urban rail transit systems. He is especially interested in how electrified railway systems affect utility grid performance and transformer health. His projects explore innovative ways to reduce electromagnetic disturbances, enhance transformer longevity, and stabilize grid voltage under metro-induced interference. A key aspect of his work includes proposing DC-blocking devices, integrated simulation models, and optimization strategies that are grounded in both theory and practice. His current work contributes toward resilient, sustainable, and intelligent urban electrification systems.

🧾 Conclusion

Adisu Makeyaw is a rising researcher whose work bridges the technical gaps in urban electrification and smart energy systems. With a keen eye for real-world applicability and a deep understanding of power electronics, Adisu is making meaningful contributions to infrastructure innovation. His academic rigor, combined with practical collaboration, makes him a strong contender for recognition such as the Best Researcher Award. As he continues to publish, collaborate, and innovate, Adisu stands as a promising figure in the transformation of sustainable railway systems and future-proof power networks.

📄 Top Publication Note

Title: Utility Transformer DC Bias Caused by Metro Stray Current—A Review
Authors: Makeyaw, A.; Yang, X.; Sun, X.; Liu, K.; Wu, T.; Chen, L.
Journal: Energies
Published Year: 2025
Cited by Articles: 3 (as of July 2025 in Google Scholar and Scilit)
Indexed In: SCI, Scopus

Sisil Kumarawadu | Energy systems applications | Excellence in Innovation

Prof. Sisil Kumarawadu | Energy systems applications | Excellence in Innovation

Senior Professor, University of Moratuwa, Sri Lanka

Sisil Kumarawadu, Ph.D., is a Senior Professor in Electrical Engineering at the University of Moratuwa, Sri Lanka, and a distinguished professor at Shanghai University of Electric Power. With expertise in smart energy-efficient systems, systems automation, and AI applications, he has made significant contributions to robotics, intelligent systems, and applied statistics. His leadership extends to his past roles as the Head of the Department of Electrical Engineering and Chairman of the Board of Governors at the Arthur C. Clarke Institute for Modern Technologies. Dr. Kumarawadu’s career includes research, teaching, and mentorship, further enhancing his stature as a leading academic and innovator in electrical engineering. 📚💡🌍

Publication Profile

Scopus

Education:

Dr. Kumarawadu holds a Ph.D. in Robotics and Intelligent Systems from Saga National University, Japan (2003), a Master’s degree in Advanced Systems Control Engineering from the same institution (2000), and a First Class Honours BSc in Electrical Engineering from the University of Moratuwa, Sri Lanka (1996). 🎓📘

Experience:

Dr. Kumarawadu has over two decades of experience in academia, having served as a Senior Professor, Professor, and Associate Professor in Electrical Engineering at the University of Moratuwa. He has held notable positions including the Exetel Endowed Professor in Artificial Intelligence and Postdoctoral Research Fellow at the National Central University, Taiwan. He has delivered keynote speeches at major international conferences and has contributed to several research projects in automation, energy systems, and AI. 🏫🌍📈

Research Interests:

Dr. Kumarawadu’s research interests include smart energy-efficient systems, systems automation and control, AI applications, and applied statistics. He is particularly focused on innovations in robotics, intelligent transportation systems, and sustainable energy solutions, contributing to various cutting-edge advancements in these fields. ⚡🤖🔬

Awards:

Dr. Kumarawadu has received numerous prestigious awards, including the Sri Lanka Education Leadership Award (2019), the National Research Council Merit Award for Scientific Publications (2010), and the Presidential Award for Scientific Research Publications (2007, 2008). He has also been honored as an Overseas Distinguished Professor by Shanghai University of Electric Power and recognized in the Marquis Who’s Who in the World (25th Edition). 🏆🥇🎖️

Publications:

“NILM for Commercial Buildings: Deep Neural Networks Tackling Non-Linear and Multi-Phase Loads,” Energies (Section F: Electrical Engineering), Vol. 17, Issue 15, August 2024.

“A Biphasic Machine Learning Approach for Detecting Electricity Theft Cyberattacks in Smart Grids,” IEEE Trans. Smart Grids (under review).
Link to publication

“Dijkstra Method Based Zone Temperature Management Strategy for Optimal Energy Saving with Guaranteed Thermal Comfort,” The International Journal of Building Science and its Applications (under review).
Link to publication

“Review on Li-Ion Battery Parameter Extraction Methods,” IEEE Access, Vol. 11, 2023.
Link to publication

“Deep Learning-based Non-Intrusive Load Monitoring for a Three-Phase System,” IEEE Access, Vol. 11, 2023.
Link to publication