Md. Khabir Uddin Ahamed | Machine Learning | Best Researcher Award

Mr. Md. Khabir Uddin Ahamed | Machine Learning | Best Researcher Award

Mr. Md. Khabir Uddin Ahamed – Lecturer, Jamalpur Science and Technology University, Bangladesh.

Md. Khabir Uddin Ahamed is a dynamic Bangladeshi academic and researcher in Computer Science & Engineering. Known for his contribution to data-driven technologies, he has authored several impactful publications in domains like machine learning, computer vision, and AI. With strong analytical and problem-solving skills, he’s actively engaged in academic instruction and cutting-edge research. He is currently a Lecturer at Jamalpur Science and Technology University. Khabir combines technical prowess with a passion for innovation, contributing to both academic and social sectors through technological projects and scientific publications.

Publication Profile

Scopus

ORCID

Google Scholar

Education Background

Md. Khabir Uddin Ahamed holds a B.Sc. and M.Sc. in Computer Science & Engineering from Jagannath University, where he secured the 2nd merit position in both undergraduate and postgraduate programs. His academic foundation is further solidified by earlier education from Govt. Science College and BCSIR High School under the Dhaka Board. His strong educational background has shaped his ability to undertake impactful research, particularly in artificial intelligence and data science, and contributed to his success as a university lecturer and researcher.

Professional Experience

Khabir began his teaching career as a Lecturer in the Department of Computer Science & Engineering at Bangladesh University (2022–2023). Since December 2023, he has been serving as a Lecturer at Jamalpur Science and Technology University. In his academic roles, he has taught core courses, guided student research, and contributed to institutional development. He has also participated in multiple training programs under the University Grants Commission of Bangladesh, focusing on modern teaching methods, digital compliance, and administrative tools for higher education.

Awards and Honors

While there are no direct individual award mentions, Khabir’s academic distinction—earning the 2nd merit rank in both B.Sc. and M.Sc.—reflects his scholastic excellence. Furthermore, his publications have earned significant citations, indicating international recognition of his research contributions. His training certifications from the University Grants Commission and Bangladesh Accreditation Council add further credibility to his professional qualifications, reflecting national-level validation and involvement in academic quality assurance systems.

Research Focus

Md. Khabir Uddin Ahamed’s research spans several high-impact areas within computer science, including machine learning, deep learning, data science, computer vision, and blockchain technology. His recent work has explored disease detection using deep learning, behavioral analysis on social media, and intelligent transportation systems. He is passionate about leveraging AI for societal benefit and continues to explore innovative applications of technology to solve real-world problems in agriculture, health, and cybersecurity through interdisciplinary collaboration.

Top Publications 

 

Farzaneh Zareian | Machine Learning | Best Researcher Award

Ms. Farzaneh Zareian | Machine Learning | Best Researcher Award

Ms. Farzaneh Zareian – Graduate Student, Amirkabir University of Technology, Iran.

Farzaneh Zareian is a dynamic civil engineering researcher with a specialization in earthquake engineering and machine learning applications in structural analysis. Holding a master’s degree from the prestigious Amirkabir University of Technology and a bachelor’s from the University of Tehran, she has consistently demonstrated academic excellence and innovation. Farzaneh has contributed significantly through teaching, research, and scholarly publications in seismic assessment and structural resilience. With experience in AI-powered modeling, fragility curve generation, and passive control systems, she stands at the intersection of engineering and intelligent computation, contributing to safer, more resilient infrastructure in seismic-prone regions.

Publication Profile

Google Scholar

🎓 Education Background

Farzaneh Zareian earned her M.Sc. in Civil Engineering (Earthquake Engineering) from Amirkabir University of Technology, Tehran (2020–2023) with an excellent-rated thesis supervised by Dr. Mehdi Banazadeh. Her research focused on nonlinear dynamic response estimation using machine learning. Prior to that, she completed her B.Sc. in Civil Engineering at the University of Tehran (2016–2020), with coursework emphasizing earthquake engineering, bridge design, and hydraulic structures. Her academic journey highlights a deep commitment to blending structural theory with advanced computational methods, maintaining strong GPAs and securing top ranks in national entrance exams at both undergraduate and postgraduate levels.

💼 Professional Experience

Farzaneh Zareian has accumulated valuable academic experience through teaching and research roles. She worked as a sessional instructor for the “Soft Computing” course at Shahab Danesh University during 2023–2024 and currently serves as a Teaching Assistant in “Theory of Structural Analysis” at Amirkabir University of Technology. Her practical engagements also include academic projects involving seismic hazard analysis, vulnerability assessment, and AI-driven structural modeling. These roles reflect her dual strength as both an educator and practitioner in earthquake-resistant design and computational engineering, making her a well-rounded and impactful civil engineering professional.

🏅 Awards and Honors

Farzaneh’s academic excellence has been widely recognized through several honors. In 2024, she was selected as a distinguished Ph.D. candidate by Amirkabir University’s Committee of Exceptional Talents. She ranked 1st among her peers in the Earthquake Engineering master’s program in 2022 and was among the top 0.2% in both bachelor’s and master’s national entrance exams in 2016 and 2020, respectively. Additionally, she was the top high school student at NODET. These accolades reflect her exceptional dedication, intelligence, and potential as a future leader in structural and earthquake engineering research.

🔬 Research Focus

Farzaneh’s research focuses on AI-enabled structural design and optimization, particularly in seismic contexts. She specializes in applying machine learning and physics-informed models to estimate structural responses, assess risk and reliability, and enhance infrastructure resilience. Her projects include probabilistic seismic hazard analysis, fragility curve generation, and the use of deep learning for crack detection in masonry. She is deeply committed to integrating data-driven approaches with classical civil engineering practices to improve safety, sustainability, and performance of critical infrastructure under seismic hazards.

🧾 Conclusion

Farzaneh Zareian exemplifies the emerging generation of civil engineers who are leveraging artificial intelligence to redefine structural safety and resilience. Her academic accomplishments, hands-on project experiences, teaching engagements, and scholarly contributions highlight a well-rounded professional profile. As she progresses toward doctoral research, her innovative mindset and strong foundation in both theory and practice make her a prime candidate for research excellence in AI-integrated earthquake engineering. With her interdisciplinary approach, she is poised to make impactful contributions to the global civil and seismic engineering community.

📚 Publication Top Notes

 Prediction of nonlinear dynamic responses and generation of seismic fragility curves for steel moment frames using boosting machine learning techniques
📅 Year: 2024 (Nov.)
📘 Journal: Computers & Structures
🔢 Cited by: 1

 Machine learning-based seismic risk assessment of steel moment structures: a reliability analysis framework
📅 Year: In Preparation (Expected 2025)
📘 Journal: Engineering Structures
🔢 Cited by: