Mr. Abdullah Al Mamun | Deep Learning | Young Scientist Award

Mr. Abdullah Al Mamun | Deep Learning | Young Scientist Award

Lecturer, Dhaka University of Engineering & Technology (DUET), Gazipur, Bangladesh

Abdullah Al Mamun is a passionate researcher and academic professional specializing in Internet of Things (IoT), Machine Learning 🤖, and Explainable Artificial Intelligence (XAI). Currently pursuing his Master of Science in Engineering at Dhaka University of Engineering & Technology (DUET), Gazipur, he brings a vibrant combination of theoretical knowledge and hands-on research experience. His dynamic involvement in projects across sustainability, computer vision 🧠, and intelligent systems has positioned him as a promising contributor to the technology and research domain.

Publication Profile

ORCID

🎓 Education Background

Abdullah Al Mamun is presently pursuing his M.Sc. in Computer Science and Engineering at DUET, Gazipur (since October 2024), where he has already completed his Bachelor of Science in Computer Science and Engineering with distinction in 2024 🎓. His consistent academic journey showcases his dedication to computing, innovation, and advanced research.

💼 Professional Experience

Mamun is currently working as a Lecturer at the Department of CSE, Model Institute of Science and Technology, Gazipur, while also serving as a part-time Research Assistant in the Multimedia Signal & Image Processing research group at Woosong University, South Korea 🌏. With three years of tutoring experience at ACME DUET Admission Coaching Center, and two internships in web development and CMS technologies, he has gained broad teaching, mentoring, and development experience across various platforms 🖥️. His administrative roles in DUET Career & Research Club and DUET Computer Society also underscore his leadership and community contributions.

🏆 Awards and Honors

Abdullah has been recognized for his academic and problem-solving excellence. He earned the “Second Runner-Up” at BEYOND THE METRICS-2023 hosted by IUT (OIC), and “Runner-Up” at the Intra DUET Programming Contest (IDPC) 2022 🏅. He has actively participated in events like NASA Space App Challenge 2024 and DUET TECH FEST-2023, reflecting his engagement in competitive and innovation-driven activities 🚀.

🔬 Research Focus

Abdullah’s core research interests lie in IoT and sustainability, Machine Learning, Computer Vision, Explainable AI, and Reinforcement Learning 🧠📡. He has been instrumental in implementing real-world projects such as IoT-based energy monitoring systems and child safety monitoring, defect detection via XAI, and skin cancer classification using optimized deep learning models. His collaborative projects with global research teams exhibit his strong contribution to the evolving field of intelligent systems and digital transformation.

✅ Conclusion

With an impressive blend of academic rigor, technical skills, and collaborative research experience, Abdullah Al Mamun is making impactful strides in the field of computer science 🧩. His work exemplifies innovation, sustainability, and intelligence in engineering systems. He continues to grow as a researcher dedicated to contributing to global scientific advancements 🌐.

📚 Top Publications 

  1. Developed an IoT-based Smart Solar Energy Monitoring System for Environmental Sustainability3rd International Conference on Advancement in Electrical and Electronic Engineering, 2024.
    Cited by: 7 articles 📑

  2. Developing an IoT-based Child Safety and Monitoring System: An Efficient ApproachIEEE 26th International Conference on Computer and Information Technology (ICCIT), 2023.
    Cited by: 13 articles 🔐

  3. Software Defects Identification: Results Using Machine Learning and Explainable Artificial Intelligence TechniquesIEEE Journal, 2024.
    Cited by: 15 articles ⚙️

  4. IoT-Based Solutions for Uneven Roads and Balanced Vehicle Systems Using YOLOv8MDPI Sensors Journal, 2023.
    Cited by: 10 articles 🚗

  5. Optimizing Deep Learning for Skin Cancer Classification: A Computationally Efficient CNN2nd NCIM Conference, Bangladesh, 2024.
    Cited by: 5 articles 🧬

  6. Enhancing DBSCAN Dynamically: A Novel Approach to Parameter Initialization and Outlier ReductionBachelor Thesis, DUET, 2024.
    Cited by: 3 articles 🔍

 

Prof. Chen Juan | Deep learning | Best Researcher Award

Prof. Chen Juan | Deep learning | Best Researcher Award

Shanghai University, China

Dr. Juan Chen is a distinguished researcher and educator in the field of big data analytics, autonomous driving, and computer vision, currently serving as a faculty member at SILC Business School, Shanghai University since 2009. With over two decades of academic and research experience, she specializes in developing cutting-edge AI models, especially for transportation and e-commerce applications. Her expertise in deep learning and intelligent transportation systems has earned her recognition in core academic journals and scientific communities.

Publication Profile

ORCID

🎓 Education Background

Dr. Chen obtained her Ph.D. in Control Science and Engineering from Tongji University, China in 2008. She previously completed her Master’s degree at the School of Automation, Xi’an Jiaotong University in 2003, and earned her Bachelor’s degree in Energy and Power Engineering from Shanghai University of Technology in 1996. Her robust academic background laid the foundation for her interdisciplinary work across AI, engineering, and data science.

🏫 Professional Experience

Dr. Chen began her academic career as a lecturer at the School of Electronic and Information Engineering, Northern University for Nationalities from 1996 to 1998 and returned to the same school from 2001 to 2002. Since 2009, she has been actively contributing to teaching and research at SILC Business School, Shanghai University. Her teaching portfolio includes essential courses such as Python Program Design, Fundamentals of Data Analysis, and Deep Learning Practice in Computer Vision, which bridge theory with real-world AI practices.

🏆 Awards and Honors

Dr. Chen has consistently published in prestigious journals indexed in SCI and ESCI, such as the International Journal of Distributed Sensor Networks, IET Intelligent Transport Systems, and Algorithms. Her research achievements, including core journal recognition by Peking University, reflect her impactful contributions to intelligent systems and optimization in traffic networks.

🔬 Research Focus

Dr. Chen’s research is centered on big data analysis applied to transportation and e-commerce, autonomous vehicle control, computer vision, and deep learning. She has developed advanced models such as graph convolutional networks and spatiotemporal LSTM to address challenges in vehicle trajectory prediction, traffic congestion, and signal optimization. Her work integrates reinforcement learning, fuzzy logic, and multi-objective optimization to improve real-world systems’ efficiency and sustainability.

🔚 Conclusion

With an unwavering commitment to advancing AI applications in intelligent transportation, Dr. Juan Chen exemplifies interdisciplinary excellence. Her blend of academic rigor, research innovation, and practical teaching continues to inspire the next generation of engineers and data scientists. 🚗💡📊

📚 Top Publications :

Urban expressway on-ramp control based on improved NSGA-Ⅱ algorithm of reinforcement learning
Journal of Shanghai University (Natural Science Edition), 2023
Cited by: Search in Google Scholar

Vehicle Trajectory Prediction Based on Local Dynamic Graph Spatiotemporal-LSTM Model
World Electric Vehicle Journal, 2024
Cited by: Search in Google Scholar

KGCN-LSTM: A graph convolutional network considering knowledge fusion of point of interest for vehicle trajectory prediction
IET Intelligent Transport Systems, 2023
Cited by: Search in Google Scholar

Connected and automated vehicle control at unsignalized intersection based on deep reinforcement learning in vehicle-to-infrastructure environment
International Journal of Distributed Sensor Networks, 2022
Cited by: Search in Google Scholar

Multi-class expressway traffic control for reducing congestion and emissions based on fuzzy NSGA
Journal of Shanghai University (Natural Science Edition), 2021
Cited by: Search in Google Scholar

Freeway Traffic Congestion Reduction and Environment Regulation via Model Predictive Control
Algorithms, 2019
Cited by: Google Scholar

Traffic congestion prediction based on GPS trajectory data
International Journal of Distributed Sensor Networks, 2019
Cited by: Search in Google Scholar