Dr. Gu Shan | Power Systems | Women Researcher Award

Dr. Gu Shan | Power Systems | Women Researcher Award

Associate Professor | Zhejiang University of Water Resources and Electric Power | China

Dr. Shan Gu is a researcher in the fields of energy engineering, sustainable power systems, and environmental technology, with a strong focus on biomass utilization, air-pollutant mitigation, and life cycle assessment. Her work integrates engineering experimentation, process optimization, and environmental impact evaluation to advance the development of clean energy technologies. She has contributed significantly to the study of biomass pyrolysis, nanosilica extraction from agricultural waste, and the operational behavior of circulating fluidized bed gasifiers. Her research on biomass CFB gasification systems, including the coupling of gasifiers with industrial steam boilers, has generated important insights into practical challenges such as slagging, ash deposition, and system optimization. These contributions have provided evidence-based guidance for the scaling, operation, and environmental performance improvement of biomass-based energy systems. Dr. Gu has authored more than 30 research publications, including multiple SCI-indexed articles, with several featured in high-impact journals. Her scholarly work demonstrates strong visibility, with measurable academic influence across citation databases. According to Scopus, she has 14 indexed documents, 16 citations by 15 documents, and an h-index of 2. Her Google Scholar profile shows significantly higher engagement, with over 250 citations across her most influential works, including widely referenced studies on nanosilica production and biomass gasification, each exceeding 100 citations. Her publications continue to inform ongoing research in sustainable materials, renewable energy pathways, and the optimization of energy–environment systems, positioning her as an active contributor to advancing cleaner technologies and carbon-reduction strategies.

Publication Profile

Scopus

Featured Publications

Gu, S., Zhou, J., Luo, Z., Wang, Q., & Ni, M. (2013). A detailed study of the effects of pyrolysis temperature and feedstock particle size on the preparation of nanosilica from rice husk. Industrial Crops and Products. Citations: 121.

Gu, S., Zhou, J., Yu, C., & Shi, Z. (2015). A novel two-staged thermal synthesis method of generating nanosilica from rice husk via pre-pyrolysis combined with calcination. Industrial Crops and Products. Citations: 105.

Gu, S., Zhou, J., Luo, Z., & Shi, Z. (2015). Kinetic study on the preparation of silica from rice husk under various pretreatments. Journal of Thermal Analysis and Calorimetry. Citations: 25.

Gu, S., Zhou, J., Lin, B., & Luo, Z. (2015). Life cycle greenhouse gas impacts of biomass gasification-exhausted heat power generation technology in China. Journal of Biobased Materials and Bioenergy..

Li, R., Gu, S., Ye, Y., Li, Z., Zhou, L., & Xu, C. (2025). System optimization and primary electrical design of a 50 MW agrivoltaic power station: A case study in China.

Prof. Chunlei Guo | Energy Technologies | Best Researcher Award

Prof. Chunlei Guo | Energy Technologies | Best Researcher Award

Prof. Chunlei Guo | Professor | University of Rochester | United States

Academic Background

Chunlei Guo received his undergraduate education in Optical Physics and Fine Mechanics at the Changchun Institute of Optics in China. He then pursued his Ph.D. in Physics at the University of Connecticut, followed by postdoctoral training in Materials Science at Los Alamos National Laboratory. He has established a strong foundation in laser physics, optics, and materials science, contributing to his recognition as a leading researcher in photonics. According to Scopus, his work includes over four hundred publications cited nearly ten thousand times, with an h-index indicating substantial influence in his field. His Google Scholar profile further reflects his widespread impact across laser material processing, femtosecond laser applications, and nanostructuring.

Research Focus

Guo’s research primarily focuses on femtosecond laser interactions with materials, including the creation of superhydrophobic surfaces and laser-induced nanostructures. His work integrates ultrafast laser techniques with material science, aiming to advance applications in energy, imaging, and nanotechnology. His studies emphasize precise control of surface properties and functionalization at the micro- and nanoscale.

Work Experience

Guo has held a variety of academic and research positions, starting as an Assistant Professor and later Associate Professor at the Institute of Optics at the University of Rochester. He is currently a Professor at the Institute of Optics and holds joint appointments in the Department of Physics and Astronomy and the Laboratory for Laser Energetics. He has also served as the founding director of the GPL Photonics Lab in China, further establishing his international research presence.

Key Contributions

Guo has made significant contributions to laser-induced surface structuring, development of superhydrophobic and superwicking surfaces, and femtosecond laser applications in imaging and material processing. His work has enabled new methods for nanostructuring metals, improving energy management, and advancing optical technologies. He has been widely recognized for developing techniques that combine laser precision with novel material functionalities.

Awards & Recognition

Guo’s research excellence has earned him multiple prestigious awards, including honors for innovation in defense and design, recognition by professional societies, and fellowships in the Optical Society of America, American Physical Society, and International Academy of Photonics and Laser Engineering.

Professional Roles & Memberships

He has served in numerous editorial and advisory roles, including Editor-in-Chief of the CRC Handbook of Laser Technology and Applications, associate editor for leading optics journals, and program committee membership for major international conferences. He has also chaired conferences and technical groups, contributing to shaping the field of laser science and engineering globally.

Publication Profile

Scopus | ORCID

Featured Publications

Guo, C., Vorobyev, A. Y., & Singh, S. C. (2023). Imaging Dynamics of Femtosecond Laser-Induced Surface Nanostructuring. In Ultrafast Laser Nanostructuring. Springer Series in Optical Sciences, 239, 355–375.

Guo, C., & Singh, S. C. (2021). CRC Handbook of Laser Technology and Applications. CRC Press.

Vorobyev, A. Y., & Guo, C. (2015). Superwicking Surfaces Produced by Femtosecond Laser. In Advanced Lasers, 193, 101–120.

Guo, C. (2016). Using femtosecond lasers to create new material properties. SPIE Newsroom.

Guo, C. (2010). Surface-plasmon-enhanced photoelectron emission. SPIE Newsroom.

Impact Statement / Vision

Guo envisions leveraging ultrafast laser technologies to design materials with unprecedented properties for industrial, environmental, and energy applications. His work continues to inspire innovations in nanofabrication, surface engineering, and photonics, bridging fundamental research and practical applications for global scientific advancement.