Mr. Pingjie Ou | artificial intelligence | Best Researcher Award

Mr. Pingjie Ou | artificial intelligence | Best Researcher Award

Student, Guangxi University, China

Pingjie Ou is a passionate master’s student at Guangxi University, China, specializing in edge computing, cloud computing, and machine learning. With a strong academic foundation and growing research portfolio, he is actively contributing to next-generation computing paradigms. His early contributions in deep reinforcement learning applications for vehicular networks have already gained traction within the academic community. 🧠💡

Professional Profile

Scopus

🎓 Education Background

Pingjie Ou is currently pursuing his master’s degree at Guangxi University, one of the prominent institutions in China. His academic focus lies in electrical and computer engineering, with emphasis on distributed computing and artificial intelligence. 📘🏫

💼 Professional Experience

Although a student, Pingjie Ou has engaged in substantial research activities under funded projects including The National Natural Science Foundation of China (No. 62162003) and GuikeZY24212059 supported by the Guangxi Province. His active involvement in real-time research scenarios demonstrates promising professional potential. 🔬📊

🏅 Awards and Honors

As an emerging scholar, Pingjie Ou has not yet accumulated major awards but has gained recognition through impactful publications and research citations. His growing citation record and h-index reflect the potential for future accolades. 🏆📈

🔍 Research Focus

His core research interests include edge computing, cloud computing, vehicular networks, and machine learning. He is particularly focused on cooperative caching, resource management, and optimizing network efficiency using artificial intelligence approaches such as deep reinforcement learning. 🚗☁️📶

🧾 Conclusion

Pingjie Ou is a driven young researcher dedicated to advancing intelligent computing technologies. With strong academic grounding, collaborative research exposure, and early citation impact, he stands as a promising candidate for recognition in the domain of computer science and engineering. His scholarly journey is on a clear upward trajectory. 🚀📚

📚 Publication Top Note

  1. PDRL-CM: An efficient cooperative caching management method for vehicular networks based on deep reinforcement learning
    📅 Published Year: 2025
    📖 Journal: Ad Hoc Networks
    🔗 10.1016/j.adhoc.2025.103888

 

Avirup Roy | Machine Learning |Machine Learning Research Award

Mr. Avirup Roy | Machine Learning |Machine Learning Research Award

PhD Student, Michigan State University, United States

Dr. Avirup Roy is a dedicated researcher and engineer specializing in networked embedded and wireless systems. Currently pursuing his PhD at Michigan State University, his work focuses on developing self-learning mechanisms for embedded hardware systems with limited computational resources. With a solid foundation in electronics and communication engineering, Avirup has gained extensive experience in both academia and industry, contributing to projects ranging from smart malaria detection to automated power management systems. His technical skills span machine learning, embedded systems, cloud computing, and web development. Beyond his professional life, Avirup is passionate about Indian classical music, photography, and swimming. 🌟📚🎵📷🏊‍♂️

Profile

ORCID

 

Education🎓

Michigan State University, East Lansing, MI, US PhD in Electrical and Computer Engineering (2020-Present). Dissertation: Self-learning mechanisms for Embedded hardware systems with limited computational resources. GPA: 3.75/4Maulana Abul Kalam Azad University of Technology, Kolkata, WB, India Bachelor of Technology (BTech) in Electronics and Communication Engineering (2013-2017)

Experience💼

Graduate Research Assistant, Michigan State University (Sep 2020 – Jul 2023),Developed an android and website application for smart malaria detection involving cloud database integration. Graduate Teaching Assistant, Michigan State University (Aug 2023 – Present), Instructed and graded labs for Embedded Cyber-physical Systems, VLSI Systems, and Digital Control courses. ICER Cloud Computing Fellow, Michigan State University (Sep 2023 – Present), Implemented Azure cloud resources in semi-supervised federated learning for embedded devices. Programmer Analyst, Cognizant Technology Solutions (Dec 2017 – Jul 2020), Developer and support analyst for ASP.NET based applications of MetLife Inc. Intern, Calcutta Electric Supply Corporation (CESC) Limited (Jul 2016 – Aug 2016), Worked on automated power management systems using SCADA communication. Intern, Bharat Sanchar Nigam Limited (BSNL) (Jun 2015 – Aug 2015), Explored general trends in wireless communication. Undergraduate Researcher, Maulana Abul Kalam Azad University of Technology (2015-2016), Presented research at various international conferences and served as the vice-president of SPIE Student Chapter.

Research Interests🔍

Embedded Machine Learning: Focused on developing efficient learning algorithms for resource-constrained devices.
Networked Embedded Systems: Exploring self-learning mechanisms and their applications in real-world scenarios.
Cloud Computing: Leveraging cloud resources for semi-supervised federated learning.
VLSI Systems: In-depth study and teaching of Very-Large-Scale Integration systems.
Cyber-Physical Systems: Research on embedded systems interacting with physical processes.

Awards🏆

National Social Entrepreneurship Programme (2014): Secured 2nd position for the ‘Hand-Made Paper Industry’ project.
SPIE Smart Structures and Non-destructive Evaluation Conference (2016): Presented research in Las Vegas, Nevada.
EAPE Conference (2015): Presented research on emerging areas of photonics and electronics.
Graduate Fellowships: Awarded multiple fellowships during PhD for research and teaching excellence.

Publications

Semi-Supervised Learning Using Sparsely Labelled Sip Events for Online Hydration Tracking Systems
A. Roy, H. Dutta, A. K. Bhuyan, and S. K. Biswas, 2023, International Conference on Machine Learning and Applications (ICMLA).
Cited by: 3 articles.

An On-Device Learning System for Estimating Liquid Consumption from Consumer-Grade Water Bottles and Its Evaluation
Roy, A., Dutta, H., Griffith, H., & Biswas, S., 2022, Sensors.
Cited by: 5 articles.