Dr. Zheng Liu | Materials Science | Best Researcher Award

Dr. Zheng Liu | Materials Science | Best Researcher Award

Engineer, TaiHang Laboratory, China

Dr. Zheng Liu is a dedicated Chinese materials engineer currently serving at the Taihang National Laboratory in Chengdu, Sichuan, China. Specializing in polymer chemistry and advanced composite materials, he has made significant contributions to the development of structural and wave-transparent composites. With a strong academic foundation and multiple research publications in high-impact journals, Dr. Liu is known for his work on interface modification and high-performance fiber-reinforced composites. His research is widely recognized in both academic and industrial settings.

Publication Profile

🎓 Education Background

Dr. Zheng Liu earned his Bachelor’s Degree in 2018 from Nanchang Hangkong University. He went on to receive his Master’s Degree from Northwestern Polytechnical University in 2021, where he continued and completed his Ph.D. in 2024. His academic journey has equipped him with in-depth knowledge in polymer science, composite mechanics, and material interface engineering.

💼 Professional Experience

Since March 2024, Dr. Liu has been working as an Engineer at the Lightweight Structure and Materials Manufacturing Research Center, part of the Taihang National Laboratory & Northwestern Polytechnical University. His professional focus includes the engineering of high-performance polymer and ceramic matrix composites, particularly those used in wave-transparent applications and thermal management.

🏅 Awards and Honors

While specific awards are not listed, Dr. Zheng Liu’s academic excellence is reflected through his multiple peer-reviewed publications in top-tier journals like Composites Science and Technology, Polymer Composites, and Journal of Materials Science & Technology. His work has gained citations and is co-authored with prominent researchers, demonstrating peer recognition and scholarly impact.

🔬 Research Focus

Dr. Liu’s research interests span across Polymer Chemistry and Physics; Structural/functional integrated composites; Wave-transparent and Wave-absorbing composites; Ceramic matrix composites; Thermal Conductive Composites; and Modification of Composites Interfaces. He focuses on the synthesis and design of high-performance materials with applications in aerospace, electronics, and advanced engineering.

✅ Conclusion

With a solid academic background, active research contributions, and a position at one of China’s leading research institutions, Dr. Zheng Liu is emerging as a promising figure in the field of polymer and composite materials. His ongoing work continues to drive innovations in material science, with particular emphasis on interface engineering and multifunctional composite development.

📚 Top Publications Notes – Dr. Zheng Liu 

  1. A mini‐review of ultra‐low dielectric constant intrinsic epoxy resins: Mechanism, preparation and application
    📅 2024Polymers for Advanced Technologies
    📑 Cited by: To be updated (new article)

  2. Interfacial strengthening and processing of carbon fibers reinforced poly(ether-ether-ketone) composites: A mini-review
    📅 2024Polymer Composites
    📑 Cited by: To be updated (new article)

  3. Block copolymer functionalized quartz fibers/cyanate ester wave-transparent laminated composites
    📅 2023Journal of Materials Science & Technology
    📑 Cited by: 20+ articles (estimated)

  4. Branched Fluorine/Adamantane Interfacial Compatibilizer for PBO Fibers/Cyanate Ester Wave-Transparent Laminated Composites
    📅 2023Chinese Journal of Chemistry
    📑 Cited by: 10+ articles (estimated)

  5. Low dielectric constant and highly intrinsic thermal conductivity fluorine-containing epoxy resins with ordered liquid crystal structures
    📅 2023SusMat
    📑 Cited by: 12+ articles (estimated)

  6. PBO fibers/fluorine-containing liquid crystal compound modified cyanate ester wave-transparent laminated composites with excellent mechanical and flame retardance properties
    📅 2023Journal of Materials Science & Technology
    📑 Cited by: 15+ articles (estimated)

  7. Hybrid Polymer Membrane Functionalized PBO Fibers/Cyanate Esters Wave-Transparent Laminated Composites
    📅 2022Advanced Fiber Materials
    📑 Cited by: 20+ articles (estimated)

  8. Significantly improved interfacial properties and wave-transparent performance of PBO fibers/cyanate esters laminated composites via introducing a polydopamine/ZIF-8 hybrid membrane
    📅 2022Composites Science and Technology
    📑 Cited by: 25+ articles (estimated)

  9. Improving the comprehensive properties of PBO fibres/cyanate ester composites using a hyperbranched fluorine and epoxy containing PBO precursor
    📅 2021Composites Part A: Applied Science and Manufacturing
    📑 Cited by: 30+ articles (estimated)

  10. Optimization of PBO fibers/cyanate ester wave-transparent laminated composites via incorporation of a fluoride-containing linear interfacial compatibilizer
    📅 2021Composites Science and Technology
    📑 Cited by: 35+ articles (estimated)

 

Mr. Hao Chen | Engineering | Best Researcher Award

Mr. Hao Chen | Engineering | Best Researcher Award

Student, Shanghai Maritime University, China

Hao Chen is a dedicated student and emerging researcher in the field of electrical engineering, currently pursuing his Master’s degree at Shanghai Maritime University, China. With a passion for innovation in power electronics, he has co-authored a high-impact review paper and presented at a top international conference. His collaborative efforts with globally renowned professors demonstrate his potential to become a significant contributor to academic research. 🌟📘

Publication Profile

ORCID

🎓Education Background

Hao Chen earned his Bachelor of Science (B.S.) degree in Electrical Engineering from Shanghai Maritime University in 2022. He is presently enrolled in the same university for his Master of Science (M.S.) degree in Electrical Engineering, with a focus on advanced inverter technologies and power systems. 🏫⚡

💼Professional Experience

Although currently a student, Hao Chen has taken an active role in academic research and publication. He co-authored a comprehensive review article alongside distinguished professors Prof. Weimin Wu and Prof. Frede Blaabjerg, showcasing his research capabilities and interdisciplinary collaboration skills. 🧑‍💻📑

🏆Awards and Honors

While Hao Chen has not yet received formal awards, his selection as a co-author with leading researchers and his acceptance at IPEMC 2024 highlight his growing recognition in the academic community. His contributions reflect promise and dedication in the early stages of his research career. 🏅📈

🔬Research Focus

Hao Chen focuses on Hybrid Three-Level Active Neutral-Point Clamped (HT-ANPC) inverters, emphasizing topological innovations, performance improvements, and practical application challenges. His work targets the development of more efficient and reliable power converters essential for modern electrical systems and renewable energy applications. 🔋🔧

📝Conclusion

Hao Chen stands out as a motivated young researcher with a clear academic direction and collaborative mindset. His contribution to inverter research, joint work with established experts, and commitment to scholarly excellence position him as a promising candidate for the Best Researcher Award. 🚀📚

📚Top Publication Note

Title: A Review of Hybrid Three-Level ANPC Inverters: Topologies, Comparison, Challenges and Improvements in Applications
Journal: Energies
DOI: 10.3390/en18102613

Alexandru Paraschiv | Materials Engineering | Young Scientist Award

Dr. Alexandru Paraschiv | Materials Engineering | Young Scientist Award

Senior Researcher, Romanian Research and Development Institute for Gas Turbines COMOTI, Romania

🌟 Dr. Alexandru Paraschiv is a distinguished Research Scientist I at the National Research and Development Institute for Gas Turbines COMOTI in Bucharest, Romania. With over 11 years of expertise in Materials Science and Advanced Manufacturing Technologies, his work has significantly advanced the fields of high-temperature materials and additive manufacturing. Dr. Paraschiv’s groundbreaking research has earned him recognition in both national and international projects, particularly in aerospace applications. 🚀

Profile

ORCID

 

Education: 🎓

Dr. Alexandru Paraschiv completed his Ph.D. in Industrial Engineering from the Doctoral School of Industrial Engineering and Robotics at POLITEHNICA University of Bucharest, Romania, in 2021. He holds a Master’s degree in Engineering Nanostructures and Nonconventional Processes (2014) and a Bachelor’s degree in Industrial Engineering (2012) from the same university. 📚

Experience: 🏢

Dr. Paraschiv has steadily advanced through various roles at COMOTI, starting as a Scientific Researcher Assistant in 2013 and reaching his current position as a Scientific Researcher I in 2024. His career includes significant project management and mentorship roles, contributing to the development of new materials and technologies for high-performance aerospace components. 🔬

Research Interests: 🔍

Dr. Paraschiv’s research focuses on additive manufacturing, high-temperature oxidation kinetics, and the development of advanced materials for aerospace and energy applications. His work in optimizing laser powder bed fusion technology and thermal spraying techniques has been pivotal in creating high-performance components for extreme environments. 🌡️

Awards: 🏆

Dr. Paraschiv’s innovative contributions have been recognized with numerous medals and awards at international invention exhibitions. He has also received significant funding for his projects from prestigious organizations, including the European Space Agency and the Romanian Minister of Research and Innovation. 🎖️

Publications

Assessment of Residual Stresses in Laser Powder Bed Fusion Manufactured IN 625
Materials, 17(2), 413 (2024)
Experimental Research into an Innovative Green Propellant Based on Paraffin–Stearic Acid and Coal for Hybrid Rocket Engines

Assessment of Additive Manufactured IN 625’s Tensile Strength Based on Nonstandard Specimens
Investigation of Scanning Strategies and Laser Remelting Effects on Top Surface Deformation of Additively Manufactured IN 625
Laser Powder Bed Fusion Process Parameters’ Optimization for Fabrication of Dense IN 625