Dr. Nabi Mehri Khansari | Machine Learning | Best Researcher Award
University Professor, Sahand University of Technology, Iran
Dr. Nabi Mehri-Khansari is an esteemed Assistant Professor at the Sahand University of Technology. With a rich academic background in Mechanical and Aerospace engineering from prestigious institutions like Iran University of Science and Technology and the University of Tehran, he has made significant contributions to the field. His research spans failure analysis, damage and fracture mechanics in lightweight composite structures, leveraging machine learning and deep learning. Dr. Mehri-Khansari has collaborated with various international research centers and industries, enhancing his expertise and impact in the field.
Profile
Education
Dr. Nabi Mehri-Khansari obtained his B.Sc. degree in Mechanical Engineering from the Iran University of Science and Technology in 2011. He pursued his M.Sc. and Ph.D. degrees in Aerospace Engineering from the University of Tehran, completing them in 2014 and 2018, respectively. His academic excellence is marked by being ranked 2nd in M.Sc. and 1st in Ph.D., earning acceptance with quotas for talented students. He also served as a research fellow at NTNU University, Trondheim, Norway, further broadening his academic horizons.
Experience
Dr. Mehri-Khansari has an extensive professional background. He has been a faculty member at the Sahand University of Technology since January 2019. Prior to this, he was a lecturer at the University of Tehran – North Branch, a research assistant at NTNU University in Norway, and a technical expert at the Iranian Space Institute. His diverse roles reflect his versatile expertise and commitment to advancing engineering education and research.
Research Interests
Dr. Mehri-Khansari’s research interests are vast and interdisciplinary. They include wind turbine technology, multi-scale fracture mechanics of composites and inhomogeneous media, multi-scale damage mechanics, aeroelasticity, and defect detection methods. His innovative work often incorporates machine learning and deep learning techniques, pushing the boundaries of traditional engineering research.
Awards
Dr. Mehri-Khansari has received numerous accolades throughout his career. These include the prestigious Ph.D. acceptance with quotas for talented students, being ranked 1st in his Ph.D. program at the University of Tehran, and the Best Teacher Award from the Sahand University of Technology in June 2024. His membership in professional organizations such as the American Society of Mechanical Engineering and the Iranian Composites Scientific Association further underscores his professional excellence.
Publications
Orthotropic failure criteria based on machine learning and micro-mechanical matrix adapting coefficient
Mixed-modes (I/III) fracture of aluminum foam based on micromechanics of damage
Micro-mechanical damage diagnosis methodologies based on machine learning and deep learning models
Numerical & experimental assessment of mixed-modes (I/II) fracture of PMMA/hydroxyapatite nanocomposite