Farzaneh Zareian | Machine Learning | Best Researcher Award

Ms. Farzaneh Zareian | Machine Learning | Best Researcher Award

Ms. Farzaneh Zareian – Graduate Student, Amirkabir University of Technology, Iran.

Farzaneh Zareian is a dynamic civil engineering researcher with a specialization in earthquake engineering and machine learning applications in structural analysis. Holding a master’s degree from the prestigious Amirkabir University of Technology and a bachelor’s from the University of Tehran, she has consistently demonstrated academic excellence and innovation. Farzaneh has contributed significantly through teaching, research, and scholarly publications in seismic assessment and structural resilience. With experience in AI-powered modeling, fragility curve generation, and passive control systems, she stands at the intersection of engineering and intelligent computation, contributing to safer, more resilient infrastructure in seismic-prone regions.

Publication Profile

Google Scholar

🎓 Education Background

Farzaneh Zareian earned her M.Sc. in Civil Engineering (Earthquake Engineering) from Amirkabir University of Technology, Tehran (2020–2023) with an excellent-rated thesis supervised by Dr. Mehdi Banazadeh. Her research focused on nonlinear dynamic response estimation using machine learning. Prior to that, she completed her B.Sc. in Civil Engineering at the University of Tehran (2016–2020), with coursework emphasizing earthquake engineering, bridge design, and hydraulic structures. Her academic journey highlights a deep commitment to blending structural theory with advanced computational methods, maintaining strong GPAs and securing top ranks in national entrance exams at both undergraduate and postgraduate levels.

💼 Professional Experience

Farzaneh Zareian has accumulated valuable academic experience through teaching and research roles. She worked as a sessional instructor for the “Soft Computing” course at Shahab Danesh University during 2023–2024 and currently serves as a Teaching Assistant in “Theory of Structural Analysis” at Amirkabir University of Technology. Her practical engagements also include academic projects involving seismic hazard analysis, vulnerability assessment, and AI-driven structural modeling. These roles reflect her dual strength as both an educator and practitioner in earthquake-resistant design and computational engineering, making her a well-rounded and impactful civil engineering professional.

🏅 Awards and Honors

Farzaneh’s academic excellence has been widely recognized through several honors. In 2024, she was selected as a distinguished Ph.D. candidate by Amirkabir University’s Committee of Exceptional Talents. She ranked 1st among her peers in the Earthquake Engineering master’s program in 2022 and was among the top 0.2% in both bachelor’s and master’s national entrance exams in 2016 and 2020, respectively. Additionally, she was the top high school student at NODET. These accolades reflect her exceptional dedication, intelligence, and potential as a future leader in structural and earthquake engineering research.

🔬 Research Focus

Farzaneh’s research focuses on AI-enabled structural design and optimization, particularly in seismic contexts. She specializes in applying machine learning and physics-informed models to estimate structural responses, assess risk and reliability, and enhance infrastructure resilience. Her projects include probabilistic seismic hazard analysis, fragility curve generation, and the use of deep learning for crack detection in masonry. She is deeply committed to integrating data-driven approaches with classical civil engineering practices to improve safety, sustainability, and performance of critical infrastructure under seismic hazards.

🧾 Conclusion

Farzaneh Zareian exemplifies the emerging generation of civil engineers who are leveraging artificial intelligence to redefine structural safety and resilience. Her academic accomplishments, hands-on project experiences, teaching engagements, and scholarly contributions highlight a well-rounded professional profile. As she progresses toward doctoral research, her innovative mindset and strong foundation in both theory and practice make her a prime candidate for research excellence in AI-integrated earthquake engineering. With her interdisciplinary approach, she is poised to make impactful contributions to the global civil and seismic engineering community.

📚 Publication Top Notes

 Prediction of nonlinear dynamic responses and generation of seismic fragility curves for steel moment frames using boosting machine learning techniques
📅 Year: 2024 (Nov.)
📘 Journal: Computers & Structures
🔢 Cited by: 1

 Machine learning-based seismic risk assessment of steel moment structures: a reliability analysis framework
📅 Year: In Preparation (Expected 2025)
📘 Journal: Engineering Structures
🔢 Cited by:

Avirup Roy | Machine Learning |Machine Learning Research Award

Mr. Avirup Roy | Machine Learning |Machine Learning Research Award

PhD Student, Michigan State University, United States

Dr. Avirup Roy is a dedicated researcher and engineer specializing in networked embedded and wireless systems. Currently pursuing his PhD at Michigan State University, his work focuses on developing self-learning mechanisms for embedded hardware systems with limited computational resources. With a solid foundation in electronics and communication engineering, Avirup has gained extensive experience in both academia and industry, contributing to projects ranging from smart malaria detection to automated power management systems. His technical skills span machine learning, embedded systems, cloud computing, and web development. Beyond his professional life, Avirup is passionate about Indian classical music, photography, and swimming. 🌟📚🎵📷🏊‍♂️

Profile

ORCID

 

Education🎓

Michigan State University, East Lansing, MI, US PhD in Electrical and Computer Engineering (2020-Present). Dissertation: Self-learning mechanisms for Embedded hardware systems with limited computational resources. GPA: 3.75/4Maulana Abul Kalam Azad University of Technology, Kolkata, WB, India Bachelor of Technology (BTech) in Electronics and Communication Engineering (2013-2017)

Experience💼

Graduate Research Assistant, Michigan State University (Sep 2020 – Jul 2023),Developed an android and website application for smart malaria detection involving cloud database integration. Graduate Teaching Assistant, Michigan State University (Aug 2023 – Present), Instructed and graded labs for Embedded Cyber-physical Systems, VLSI Systems, and Digital Control courses. ICER Cloud Computing Fellow, Michigan State University (Sep 2023 – Present), Implemented Azure cloud resources in semi-supervised federated learning for embedded devices. Programmer Analyst, Cognizant Technology Solutions (Dec 2017 – Jul 2020), Developer and support analyst for ASP.NET based applications of MetLife Inc. Intern, Calcutta Electric Supply Corporation (CESC) Limited (Jul 2016 – Aug 2016), Worked on automated power management systems using SCADA communication. Intern, Bharat Sanchar Nigam Limited (BSNL) (Jun 2015 – Aug 2015), Explored general trends in wireless communication. Undergraduate Researcher, Maulana Abul Kalam Azad University of Technology (2015-2016), Presented research at various international conferences and served as the vice-president of SPIE Student Chapter.

Research Interests🔍

Embedded Machine Learning: Focused on developing efficient learning algorithms for resource-constrained devices.
Networked Embedded Systems: Exploring self-learning mechanisms and their applications in real-world scenarios.
Cloud Computing: Leveraging cloud resources for semi-supervised federated learning.
VLSI Systems: In-depth study and teaching of Very-Large-Scale Integration systems.
Cyber-Physical Systems: Research on embedded systems interacting with physical processes.

Awards🏆

National Social Entrepreneurship Programme (2014): Secured 2nd position for the ‘Hand-Made Paper Industry’ project.
SPIE Smart Structures and Non-destructive Evaluation Conference (2016): Presented research in Las Vegas, Nevada.
EAPE Conference (2015): Presented research on emerging areas of photonics and electronics.
Graduate Fellowships: Awarded multiple fellowships during PhD for research and teaching excellence.

Publications

Semi-Supervised Learning Using Sparsely Labelled Sip Events for Online Hydration Tracking Systems
A. Roy, H. Dutta, A. K. Bhuyan, and S. K. Biswas, 2023, International Conference on Machine Learning and Applications (ICMLA).
Cited by: 3 articles.

An On-Device Learning System for Estimating Liquid Consumption from Consumer-Grade Water Bottles and Its Evaluation
Roy, A., Dutta, H., Griffith, H., & Biswas, S., 2022, Sensors.
Cited by: 5 articles.