Dr. Aiai Wang | Machine Learning | Best Researcher Award

Dr. Aiai Wang | Machine Learning | Best Researcher Award

Doctoral student, University of Science and Technology Beijing, China

Ai-Ai Wang is a passionate and dedicated young researcher born in March 1998 in Langfang, Hebei Province, China. A proud member of the Communist Party of China (CPC), she is currently based at the University of Science and Technology Beijing (USTB), where she serves as the Secretary of the 16th Party Branch, 4 Zhaizhai. With a solid academic foundation in mining and civil engineering, Ai-Ai has excelled in both academic and research spheres, contributing significantly to digital and intelligent mining technologies. Her work emphasizes physical dynamics in tailings sand cementation and filling, showing strong potential for innovation in sustainable mining practices.

Publication Profile

Scopus

🎓Education Background:

Ai-Ai Wang completed her Bachelor of Science in Mining Engineering from North China University of Science and Technology in 2021. She further pursued her Master’s degree in Civil Engineering at the University of Science and Technology Beijing (2021.09–2024.06), affiliated with the School of Civil and Resource Engineering.

🛠️Professional Experience:

Alongside her academic journey, Ai-Ai has undertaken significant responsibilities, currently serving as Secretary of the Party Branch at USTB. Her leadership extends beyond administration into collaborative research projects, software development, and patent contributions under renowned mentors such as Prof. Cao Shuai. She has played vital roles in developing intelligent systems for mining operations, reinforcing her multidisciplinary strengths.

🏅Awards and Honors:

Ai-Ai Wang has been recognized extensively for her academic and research excellence. Notable accolades include the “Top Ten Academic Stars” at USTB (2023), a National Scholarship for Master’s Degree Students (2022), the prestigious Taishan Iron and Steel Scholarship (2023), and multiple First-Class Academic Scholarships from USTB. She was twice named an Outstanding Three-Good Graduate Student and honored by her school as an outstanding individual. Moreover, she has received scientific awards such as the First Prize from the China Gold Association and the Second Prize from the China Nonferrous Metals Industry for her impactful contributions to green and safe mining.

🔬Research Focus:

Ai-Ai Wang’s research is rooted in advanced techniques of tailings sand cementation, intelligent filling systems, and digital mining. She explores the structural stability of backfills, application of nanomaterials, and CT-based 3D modeling of internal structures. Her work blends civil engineering, environmental safety, and digital innovation, aiming to enhance sustainability and efficiency in modern mining. She also contributes to cutting-edge software systems and patented technologies for mining design and operation support.

📝Conclusion:

Ai-Ai Wang stands out as a promising engineer and researcher whose academic achievements, professional dedication, and innovative research in intelligent mining set a high standard for future civil and mining engineers. Her trajectory reflects not just technical mastery but a deep commitment to sustainable and smart engineering solutions in the mining industry.

📚Top Publications with Details

Effect of height to diameter ratio on dynamic characteristics of cemented tailings backfills with fiber reinforcement through impact loading – Construction and Building Materials, 2022
Cited by: 26 articles
Influence of types and contents of nano cellulose materials as reinforcement on stability performance of cementitious tailings backfill – Construction and Building Materials, 2022
Cited by: 20 articles
Quantitative analysis of pore characteristics of nanocellulose reinforced cementitious tailings fills using 3D reconstruction of CT images – Journal of Materials Research and Technology, 2023
Cited by: 12 articles

 

Xiaohui Huang | Artificial Intelligence| Best Researcher Award

Assoc Prof Dr. Xiaohui Huang | Artificial Intelligence| Best Researcher Award

Dean, East China jiaotong university, Japan

👨‍🏫 Dr. Xiaohui Huang is an Associate Professor at the School of Information Engineering, East China Jiaotong University. He earned his PhD from the School of Computer Science, Harbin Institute of Technology in November 2014. He has been a visiting scholar at the German Cancer Research Center and Nanyang Technological University. Dr. Huang has been leading several high-impact research projects funded by national and provincial bodies. He is an expert reviewer for various prestigious journals and a member of notable academic associations.

Profile

Scopus

 

Education

🎓 PhD in Computer Science, Harbin Institute of Technology, November 2014, German Cancer Research Center, December 2010 – October 2011, School of Computer Science and Engineering, Nanyang Technological University, November 2017 – November 2018

Experience

💼 Associate Professor, School of Information Engineering, East China Jiaotong University, January 2018 – Present
Lecturer, School of Information Engineering, East China Jiaotong University, December 2014 – December 2017
Visiting Scholar, Nuclear Medicine Research Group, German Cancer Research Center, December 2010 – October 2011
Software Engineer, Yichun Branch, China Telecom, August 2008 – February 2010

🔬 Research Interests

Deep Learning. Remote Image Analysis. Intelligent Transportation

🏆 Awards

Principal Investigator for various prestigious research projects including the National Natural Science Foundation of China and Jiangxi Province Natural Science Foundation.

 Publications

Multi-view dynamic graph convolution neural network for traffic flow prediction. Expert Systems With Applications, 2023 (SCI Zone 1 top)
Cited by: 15 articles

MAPredRNN: Multi-attention predictive RNN for traffic flow prediction by dynamic spatio-temporal data fusion. Applied Intelligence, 2023 (SCI Zone 2)
Cited by: 10 articles

SS-TMNet: Spatial–Spectral Transformer Network with Multi-Scale Convolution for Hyperspectral Image Classification. Remote Sensing, 2023 (SCI Zone 2, top)
Cited by: 8 articles

Multi-mode dynamic residual graph convolution network for traffic flow prediction. Information Sciences, 2022 (SCI Zone 1 top)
Cited by: 20 articles

A time-dependent attention convolutional LSTM method for traffic flow prediction.