Mr. Saurabh Pahune | Generative AI | Best Researcher Award

Mr. Saurabh Pahune | Generative AI | Best Researcher Award

Techncial Architect, Cardinal health, Ohio, United States

Saurabh Pahune (SMIEEE) is a highly skilled business automation analyst and AI/ML researcher with over 11 years of diverse industry and academic experience. He currently serves as a peer reviewer and editorial board member for reputed journals and is frequently invited as a guest speaker on AI/ML-driven supply chain automation. Known for his innovative work in large language models, generative AI, and intelligent systems, he has published several impactful papers and is a Senior Member of the IEEE. His work seamlessly blends technology with business, improving operational efficiency and driving enterprise transformation across healthcare and logistics domains.

Publication Profile

Google Scholar

ORCID

Scopus

🎓 Education Background

Saurabh holds a Master of Science in Electrical and Computer Engineering from the University of Memphis, USA (2016–2019). He earned his M.Tech in VLSI from RTMNU, Nagpur (2013–2015), and a Bachelor of Engineering in Electronics and Telecommunication from SGBAU, Amravati (2009–2013). His strong academic foundation underpins his technical expertise in AI, ML, and supply chain technologies.

💼 Professional Experience

Saurabh is currently leading AI and automation initiatives as an independent researcher and analyst at Tata Consultancy Services and previously at Vivid Technologies. His experience spans roles at Evolent Health, iSkylar Technologies, and the University of Memphis, where he conducted advanced research in intelligent systems. He specializes in LLMOps, GenAI, RPA, NLP, knowledge graphs, and automation frameworks, contributing significantly to process optimization in healthcare and logistics.

🏆 Awards and Honors

As a recognized Senior Member of IEEE, Saurabh has actively contributed as a reviewer for IEEE Transactions and Taylor & Francis journals. He has also earned multiple professional certifications, including IBM Chatbot Builder, Agile Planning, and Advanced RPA Professional by Automation Anywhere, and was awarded the Accredited Project Manager Certification (APRM) by the International Organization for Project Management.

🔬 Research Focus

Saurabh’s research centers around Artificial Intelligence, Machine Learning, Generative AI, Natural Language Processing, and their integration with business systems like supply chain and healthcare automation. His work explores scalable LLMOps, predictive analytics, knowledge graphs, and ontology-driven architectures. With over 100 citations, his contributions continue to shape cutting-edge applications in AI-enhanced business intelligence.

🔚 Conclusion

Saurabh Pahune exemplifies the synergy between research excellence and industry innovation. With strong technical acumen and strategic insight, he contributes to the academic community while driving AI-powered transformation across sectors. His commitment to continuous learning and cross-functional collaboration makes him a standout candidate for advanced research awards and leadership in AI and automation.

📚 Top Publications –Mr. Saurabh Pahune

  1. Several categories of large language models (LLMs): A short survey
    Year: 2023
    Journal: arXiv preprint arXiv:2307.10188
    Cited by: 36
    Co-author(s): M. Chandrasekharan

  2. Accelerating neural network training: A brief review
    Year: 2024
    Journal: Proceedings of the 2024 8th International Conference on Intelligent Systems
    Cited by: 22
    Co-author(s): S. Nokhwal, P. Chilakalapudi, P. Donekal, S. Nokhwal

  3. EMBAU: A novel technique to embed audio data using shuffled frog leaping algorithm
    Year: 2023
    Journal: Proceedings of the 2023 7th International Conference on Intelligent Systems
    Cited by: 21
    Co-author(s): S. Nokhwal, A. Chaudhary

  4. Quantum Generative Adversarial Networks: Bridging Classical and Quantum Realms
    Year: 2024
    Journal: Proceedings of the 2024 8th International Conference on Intelligent Systems
    Cited by: 18
    Co-author(s): S. Nokhwal, A. Chaudhary

  5. Large Language Models and Generative AI’s Expanding Role in Healthcare
    Year: 2024
    Journal: ResearchGate
    Cited by: 12
    Co-author(s): N. Rewatkar

  6. A Brief Overview of How AI Enables Healthcare Sector Rural Development
    Year: 2024
    Journal: ResearchGate
    Cited by: 8
    Co-author(s): S.A. Pahune

  7. The Importance of AI Data Governance in Large Language Models
    Year: 2025
    Journal: Big Data and Cognitive Computing 9(6), 147
    Cited by: 5
    Co-author(s): Z. Akhtar, V. Mandapati, K. Siddique

  8. Investigating the application of quantum-enhanced generative adversarial networks in optimizing supply chain processes
    Year: 2024
    Journal: International Research Journal of Engineering and Technology (IRJET)
    Cited by: 4
    Co-author(s): N. Rewatkar

  9. Cognitive automation in the supply chain: Unleashing the power of RPA vs. GenAI
    Year: 2024
    Journal: ResearchGate
    Cited by: 4
    Co-author(s): N. Rewatkar

  10. Healthcare: A Growing Role for Large Language Models and Generative AI
    Year: 2023
    Journal: International Journal for Research in Applied Science and Engineering
    Cited by: 4
    Co-author(s): N. Rewatkar

 

Lianbo Ma | Artificial Intelligence | Best Researcher Award

Prof. Lianbo Ma | Artificial Intelligence | Best Researcher Award

Professor, Northeastern University, China

Dr. Lianbo Ma is a distinguished professor at Northeastern University, China, with expertise in computational intelligence, machine learning optimization, big data analysis, and natural language processing. With a Ph.D. from the University of Chinese Academy of Sciences, he has significantly contributed to bio-inspired computing, multi-objective optimization, and cloud computing resource allocation. As a prolific researcher, Dr. Ma has published over 90 papers in high-impact journals and conferences, earning global recognition for his work. His research has been widely cited, and he has received numerous prestigious awards, making him a key figure in artificial intelligence and optimization.

Publication Profile

Google Scholar

🎓 Education

Dr. Ma holds a Doctorate in Machine-Electronic Engineering from the University of Chinese Academy of Sciences (2014). He earned his Master’s degree (2007) and Bachelor’s degree (2004) in Information Science and Engineering from Northeastern University, China. His academic journey has provided a solid foundation in AI-driven optimization, neural networks, and computational intelligence.

💼 Experience

Dr. Ma has held various esteemed positions in academia and research institutions. Since 2017, he has been a professor at Northeastern University, China, specializing in software engineering and AI. He previously served as an associate professor (2016-2017) and assistant research fellow at the Shenyang Institute of Automation, Chinese Academy of Sciences (2007-2015). His international experience includes a visiting scholar position at Surrey University, UK (2019-2020), under the mentorship of Prof. Yaochu Jin. His extensive professional journey highlights his contributions to AI-driven industrial applications and large-scale optimization.

🏆 Awards and Honors

Dr. Ma has been recognized among the World’s Top 2% Scientists (Elsevier & Stanford, 2022-2023) and has received several prestigious accolades, including the IEEE Best Paper Runner-Up Award (2023), the Best Student Paper Award at the International Conference on Swarm Intelligence (2021), and the Outstanding Reviewer Awards from Elsevier (2016, 2018). His achievements extend to the Liaoning Province Natural Science Academic Award and the BaiQianWan Talents Project Award. His dedication to research and mentorship is further evident in his recognition as an Excellent Master’s Thesis Instructor.

🔬 Research Focus

Dr. Ma’s research spans computational intelligence, large-scale multi-objective optimization, and bio-inspired computing. His expertise extends to cloud computing, edge computing, and social network analysis, where he has worked on cloud resource allocation and influence maximization. He is also actively engaged in multi-modal data processing, focusing on knowledge graphs, entity extraction, and text mining. His research integrates AI with industrial applications, advancing neural architecture search and intelligent data analysis.

🔍 Conclusion

Dr. Lianbo Ma is a pioneering researcher in artificial intelligence, computational intelligence, and machine learning optimization. His contributions to big data analytics, neural architecture search, and evolutionary computation have positioned him as a leading figure in the field. With numerous accolades, high-impact publications, and extensive academic service, Dr. Ma continues to shape the future of AI-driven optimization and intelligent computing. 🚀

📖 Publications

A Hybrid Neural Architecture Search Algorithm Optimized via Lifespan Particle Swarm Optimization for Coal Mine Image Recognition

Truthful Combinatorial Double Auctions for Mobile Edge Computing in Industrial IoT. IEEE Transactions on Mobile Computing, 21(11), 4125-4138. DOI

Single-Domain Generalized Predictor for Neural Architecture Search System. IEEE Transactions on Computers. DOI

One-Step Forward and Backtrack: Overcoming Zig-Zagging in Loss-Aware Quantization Training. AAAI-24 Conference Proceedings.

Pareto-wise Ranking Classifier for Multi-objective Evolutionary Neural Architecture Search. IEEE Transactions on Evolutionary Computation. DOI

An Adaptive Localized Decision Variable Analysis Approach to Large-Scale Multiobjective and Many-objective Optimization. IEEE Transactions on Cybernetics, 52(7), 6684-6696. DOI

Enhancing Learning Efficiency of Brain Storm Optimization via Orthogonal Learning Design. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 51(11), 6723-6742. DOI

 

Narmilan Amarasingam | Artificial Intelligence | Best Researcher Award

Mr. Narmilan Amarasingam | Artificial Intelligence | Best Researcher Award

PhD student, Queensland University of Technology, Australia

Researcher specializing in drone-based remote sensing solutions for environmental and surveillance needs, focusing on precision agriculture and biosecurity. Expertise includes UAV remote sensing, artificial intelligence, and multispectral/hyperspectral image processing. Currently pursuing a PhD in Precision Agriculture at Queensland University of Technology.

Profile

Google Scholar

 

🎓 Education

PhD: Precision Agriculture, Queensland University of Technology (2021 – Present). MSc: Agricultural Engineering, Eastern University, Sri Lanka (2016 – 2018). BSc: Agriculture, Agricultural Engineering, Eastern University, Sri Lanka (2010 – 2015). BIT: Software Engineering, University of Colombo School of Computing, Sri Lanka (2011 – 2015)

🔍 Experience

Research Assistant at Charles Sturt University and Sunshine Coast Council on projects integrating AI and drone technology for environmental monitoring and invasive species detection.

🏆 Awards

QUT/Accelerate Higher Education Development Expansion and Development (AHEAD) World Bank Project Scholarship. Vice Chancellor’s Award for Early Career Researcher, Faculty of Technology, 2022.

🌍 Research Interests

Precision Agriculture, UAV-based Remote Sensing, Multispectral Image Processing, AI, Biosystems Engineering, Environmental Management.

📚 Publications

Co-authored numerous peer-reviewed articles in Q1 and non-Q1 ranking journals on topics related to UAV-based remote sensing and AI applications in agriculture and environmental management.

A review of UAV platforms, sensors, and applications for monitoring of sugarcane crops
Predicting canopy chlorophyll content in sugarcane crops using machine learning algorithms and spectral vegetation indices derived from UAV multispectral imageryDetection of white leaf disease in sugarcane using machine learning techniques over UAV multispectral images
Detection of White Leaf Disease in Sugarcane Crops Using UAV-Derived RGB Imagery with Existing Deep Learning Models
N Amarasingam, F Gonzalez, ASA Salgadoe, J Sandino, K Powell
E-agricultural concepts for improving productivity: A review