Prof. Mengmeng Liao | Computer Vision | Research Excellence Award
Associate Professor | Shanghai University | China
Prof. Mengmeng Liao is an accomplished researcher in artificial intelligence, computer vision, pattern recognition, and image processing, with a strong record of contributions to both foundational and applied aspects of visual computing. His work focuses on developing robust algorithms for face recognition, multi-resolution modeling, adaptive subspace learning, and representation learning, addressing complex challenges in real-world environments such as noise interference, limited samples, and multi-pose variation. He has authored more than 20 SCI/EI-indexed research papers, including publications in leading international journals such as Information Sciences, Neurocomputing, Expert Systems with Applications, Electronics, and IEEE Signal Processing Letters. His research impact is reflected in Scopus metrics, with 170 citations across 159 citing documents and an h-index of 6, alongside a growing presence on Google Scholar. Prof. Liao has also contributed to several major national research initiatives, securing competitive funding from programs such as the National Natural Science Foundation and the Postdoctoral Innovative Talent Support Program. His active engagement with the global academic community includes serving as a technical committee member, session chair, and program chair for numerous international conferences. Through his interdisciplinary approach and sustained research output, Prof. Liao continues to advance the field of artificial intelligence, particularly in intelligent visual perception, pattern learning, and computational recognition systems.
Publication Profile
Publications
Fan, X., Liao, M., Chen, L., & Hu, J. (2023). Few-shot learning for multi-POSE face recognition via hypergraph de-deflection and multi-task collaborative optimization. Electronics.
Liao, M., Fan, X., Li, Y., & Gao, M. (2023). Noise-related face image recognition based on double dictionary transform learning. Information Sciences.
Fan, X., Liao, M., Xue, J., Wu, H., Jin, L., Zhao, J., & Zhu, L. (2023). Joint coupled representation and homogeneous reconstruction for multi-resolution small sample face recognition. Neurocomputing.
Liao, M., Li, Y., & Gao, M. (2022). Graph-based adaptive and discriminative subspace learning for face image clustering. Expert Systems with Applications.
Jiang, W., Li, Y., Liao, M., & Wang, S. (2021). An improved LPI radar waveform recognition framework with LDC-Unet and SSR-Loss. IEEE Signal Processing Letters.