Rab Nawaz Bashir | Machine Learning | Best Researcher Award

Dr. Rab Nawaz Bashir | Machine Learning | Best Researcher Award

Assistant Professor, COMSATS University, Pakistan

Dr. Rab Nawaz Bashir 🎓 is a distinguished computer scientist and Assistant Professor at COMSATS University Islamabad, Vehari Campus. He holds a Ph.D. in Computer Science from Islamia University Bahawalpur and has been instrumental in shaping research and education in artificial intelligence, machine learning, and the Internet of Things (IoT). With a passion for academic excellence, he has mentored numerous undergraduate, graduate, and Ph.D. students, guiding them toward impactful research and industry readiness. His dedication to scholarly contributions and innovative teaching has made him a respected figure in the field of computer science.

Publication Profile

Education 🎓

Dr. Bashir has a strong academic foundation, earning his Ph.D. in Computer Science (2021) from Islamia University Bahawalpur. Prior to that, he completed an MS in Computer Science (2015) from the same institution. His educational journey began with a Master in Computer Science (MCS) from Pir Mehr Ali Shah University of Arid Agriculture (2008). To further enhance his expertise, he is currently pursuing a Fellowship in Computer Science at Prince Sultan University, Saudi Arabia.

Experience 👨‍🏫

With over 15 years of experience, Dr. Bashir has significantly contributed to academia and research. Since 2022, he has served as an Assistant Professor at COMSATS University Islamabad, Vehari Campus, where he leads curriculum development, organizes seminars, and supervises undergraduate and Ph.D. research. Previously, he was a Lecturer at COMSATS University (2015–2022), University of Agriculture Faisalabad (2014–2015), and Institute of Southern Punjab, Multan (2010–2014). Before transitioning fully into academia, he worked in software development at the University of Agriculture Faisalabad (2008–2010), specializing in secure and scalable web applications using ASP.NET and SQL Server.

Awards and Honors 🏆

Dr. Bashir has been recognized multiple times for his outstanding contributions to research and academic excellence. He has received several Research Awards (2021, 2022, 2023, 2024) and Annual Performance Awards (2022, 2023, 2024) from his institution. Additionally, his leadership in securing National Standard for Education Accreditation Council (NSEAC) accreditation for the university in 2021 and 2024 highlights his commitment to academic quality and institutional development.

Research Focus 🔬

Dr. Bashir’s research spans various cutting-edge domains, including machine learning, IoT, and computer programming. His work emphasizes real-world applications, such as IoT-enabled smart agriculture, machine learning-based fraud detection, and deep learning for natural image processing. His interdisciplinary collaborations have resulted in high-impact research, contributing to advancements in federated learning, fog computing, and agricultural technology.

Conclusion 🌟

Dr. Rab Nawaz Bashir is a leading academic and researcher in computer science, with a strong focus on machine learning, IoT, and programming. His dedication to mentoring students, publishing impactful research, and advancing academic excellence has earned him numerous awards and recognitions. With a vision for future innovations, he continues to push the boundaries of computer science, contributing to both academia and industry through groundbreaking research and leadership.

Publications 📚

A Novel 1-Dimensional Cosine Chaotic Equation and Digital Image Encryption Technique (IEEE Access, 2024) – DOI: 10.1109/ACCESS.2024.3447889

Federated Learning (FL) Model of Wind Power Prediction (IEEE Access, 2024) – DOI: 10.1109/ACCESS.2024.3415781

IoT-Enabled Firmness Grades of Tomato in Cold Supply Chain Using Fusion of Whale Optimization Algorithm and Extreme Learning Machine (IEEE Access, 2024) – DOI: 10.1109/ACCESS.2024.3379327

Mushroom Species Classification in Natural Habitats Using Convolutional Neural Networks (CNN) (IEEE Access, 2024) – DOI: 10.1109/ACCESS.2024.3502543

Machine Learning and Fog Computing-Enabled Sensor Drift Management in Precision Agriculture (IEEE Sensors Journal, 2024) – DOI: 10.1109/JSEN.2024.3451662

Principal Component Analysis (PCA) and Feature Importance-Based Dimension Reduction for Reference Evapotranspiration (ET0) Predictions of Taif, Saudi Arabia (Computers and Electronics in Agriculture, 2024) – DOI: 10.1016/j.compag.2024.109036

Ensemble Deep Learning-Based Prediction of Fraudulent Cryptocurrency Transactions (IEEE Access, 2023) – DOI: 10.1109/ACCESS.2023.3310576

Internet of Things Based Weekly Crop Pest Prediction by Using Deep Neural Network  (IEEE Access, 2023) – DOI: 10.1109/ACCESS.2023.3301504

Stacked Ensemble Model for Tropical Cyclone Path Prediction (IEEE Access, 2023) – DOI: 10.1109/ACCESS.2023.3292907

Smart Reference Evapotranspiration Using Internet of Things and Hybrid Ensemble Machine Learning Approach (Internet of Things, 2023) – DOI: 10.1016/j.iot.2023.100962

soheila nazari | neural network | Best Researcher Award

Assist Prof Dr. soheila nazari | neural network | Best Researcher Award

university faculty, shahid beheshti university, Iran

🎓 Dr. Soheila Nazari is a dedicated researcher and expert in Digital Electronics and Neuromorphic Computing, with a particular focus on bio-inspired systems. With a PhD from Amirkabir University of Technology, she has contributed extensively to the fields of spiking neural networks and neuron-astrocyte interactions. Dr. Nazari’s research has been published in top scientific journals, making significant strides in the development of digital and bio-inspired neural systems.

Publication Profile

Google scholar

Strengths for the Award:

  1. Educational Background: Soheila Nazari has a strong academic foundation with a B.Sc., M.Sc., and Ph.D. in Digital Electronics from prestigious institutions like Amirkabir University of Technology, Tehran. Her high GPAs and excellent thesis scores (19.5, 20, and 20) demonstrate her commitment and expertise in her field.
  2. Innovative Research: Her Ph.D. thesis focuses on creating a mapping between two spiking neural networks to enable cognitive abilities, which is highly innovative and relevant in the field of neuromorphic computing and artificial intelligence.
  3. Publications in High-Impact Journals: She has several high-quality publications in respected journals, such as Neural Networks and Neuroscience Letters. Her research on neuron-astrocyte interactions and neuromorphic circuits is cutting-edge and aligns with current trends in neuro-inspired computational systems.
  4. Interdisciplinary Work: Soheila’s work spans across multiple fields including digital electronics, neuroscience, and biomedical engineering, showcasing her versatility and capability to work on interdisciplinary projects.
  5. Applications in Healthcare: Her involvement in the diagnostic value of impedance imaging systems in breast mass detection indicates that her research has real-world applications, particularly in healthcare, which enhances the societal impact of her work.

Areas for Improvement:

  1. Collaborations: While her research is strong, increasing her network through collaborations with international researchers or labs could enhance her visibility and broaden the impact of her work.
  2. Further Application of Research: While her publications are impressive, more practical applications or real-world implementations of her research could bolster her profile further, especially in translating neuromorphic computing models into usable technologies.
  3. Diversity of Research Topics: While she excels in neuromorphic computing, branching out into other emerging areas like quantum computing or deeper AI-related projects could further diversify her research portfolio.

Education

📚 Dr. Soheila Nazari holds a B.Sc. in Electrical Engineering (Electronics) from Razi University of Kermanshah, Iran (2008-2012), followed by an M.Sc. and Ph.D. in Digital Electronics from Amirkabir University of Technology, Tehran, Iran (2012-2014 and 2015-2018 respectively). Her academic performance has been outstanding, with a series of high-grade theses centered around neural networks and bio-inspired systems.

Experience

💻 Throughout her academic and professional career, Dr. Nazari has specialized in digital implementations of neuromorphic circuits and neuron-astrocyte interaction models. Her research experience spans numerous projects aimed at developing hardware-friendly solutions for neuromorphic applications, making her a pioneer in the digital neuromorphic circuit design field.

Research Focus

🧠 Dr. Nazari’s research primarily revolves around neuromorphic computing, bio-inspired stimulations, and digital implementations of spiking neural networks. Her work explores how neuron-astrocyte interactions can be used in hardware designs to model complex cognitive functions, and she has developed new methods for synaptic plasticity and signal processing in neural networks.

Awards and Honours

🏆 Dr. Nazari has earned recognition for her academic achievements, receiving top scores in her thesis work during her M.Sc. and Ph.D. studies. She continues to contribute to prestigious scientific conferences and journals, establishing herself as a leading voice in neuromorphic computing and digital electronics.

Publication Top Notes

📄 Dr. Nazari has published extensively in international journals, covering topics like digital neuron-astrocyte interactions, bio-inspired stimulators, and neuromorphic circuits. Her work is highly cited, reflecting its impact in the field.

A digital neuromorphic circuit for a simplified model of astrocyte dynamics (2014), Neuroscience Letters, cited by 85 articles.

A digital implementation of neuron–astrocyte interaction for neuromorphic applications (2015), Neural Networks, cited by 125 articles.

A novel digital implementation of neuron–astrocyte interactions (2015), Journal of Computational Electronics, cited by 70 articles.

Multiplier-less digital implementation of neuron–astrocyte signalling on FPGA (2015), Neurocomputing, cited by 95 articles.

A multiplier-less digital design of a bio-inspired stimulator to suppress synchronized regime in a large-scale, sparsely connected neural network (2015), Neural Computing and Applications, cited by 60 articles.

Conclusion:

Soheila Nazari is a strong candidate for the Research for Best Researcher Award. Her academic excellence, cutting-edge research, interdisciplinary work, and significant contributions to both neuromorphic computing and healthcare applications make her highly deserving of recognition. By focusing on international collaborations and translating her research into practical innovations, she could further solidify her standing as a leading researcher in her field.