Deekshitha Kosaraju | Artificial Intelligence Award | Best Researcher Award

Ms. Deekshitha Kosaraju | Artificial Intelligence Award | Best Researcher Award

LIMS Junior Developer, ALS Group USA, Corp., United States

Deekshitha Kosaraju is an accomplished Computer Science graduate from The University of Texas at Dallas, with a strong academic foundation and technical expertise in a variety of programming languages, frameworks, and cloud technologies. Her expertise spans Java, Python, JavaScript, and R, among others. Deekshitha is currently working as a Junior Developer at ALS Group USA, where she focuses on improving data integration and system efficiency. She is passionate about cloud computing, machine learning, and AI, and has published several papers on cutting-edge AI techniques, including explainable AI and quantum computing integration. 🎓👩‍💻📚

Publication Profile

Google Scholar

Education

Deekshitha Kosaraju graduated with a Bachelor of Science in Computer Science from The University of Texas at Dallas, maintaining a GPA of 3.6/4.0. During her time at university, she was honored with the Academic Excellence Scholarship. Her coursework included a wide range of subjects such as Data Structures, Machine Learning, Software Engineering, and Operating Systems. 🎓🏆

Experience

Deekshitha has gained invaluable professional experience through internships and full-time roles. Currently, she works as a Junior Developer at ALS Group USA, where she contributes to streamlining workflows, automating processes, and improving data transfer efficiency. She has previously interned at Radiant Digital, where she worked on low-code platforms and developed mobile applications that enhanced field coordination. In addition, her experience at Pearson as a Software Engineer Intern allowed her to improve user engagement and business outcomes through AI-driven applications. 💼💻

Awards and Honors

Deekshitha was awarded the Academic Excellence Scholarship during her time at The University of Texas at Dallas. Her achievements in academic and professional arenas reflect her dedication to excellence and innovation in the field of computer science. 🌟🏅

Research Focus

Deekshitha’s research primarily focuses on Artificial Intelligence, with specific attention to explainable AI, zero-shot learning, meta-learning, reinforcement learning, and AI’s integration with cloud computing and quantum technologies. She is also interested in exploring the applications of AI in various domains, such as healthcare and data analytics. Her research contributions include exploring how AI can enhance big data analytics and cloud computing innovations. 🤖📊

Conclusion

With a diverse set of technical skills and a passion for advancing AI and cloud technologies, Deekshitha Kosaraju continues to make impactful contributions to the field of Computer Science. She remains committed to expanding her knowledge in AI and exploring innovative solutions to real-world problems. 🌐🚀

Publications :

Shedding light on AI: exploring explainable AI techniques
International Journal of Research and Review, 2020
Read Article

Zero-Shot learning: teaching AI to understand the unknown
International Journal of Research and Review, 2021
DOI: 10.52403/ijrr.20211161

How meta learning enhances reinforcement learning in AI
Galore International Journal of Applied Sciences & Humanities, 2021
DOI: 10.52403/gijash.20210706

Crossing domains: the role of transfer learning in rapid AI prototyping and deployment
International Journal of Science & Healthcare Research, 2021
DOI: 10.52403/ijshr.20210464

Artificial intelligence in cloud computing: enhancements and innovations
Galore International Journal of Applied Sciences & Humanities, 2021
DOI: 10.52403/gijash.20211010

Quantum computing and artificial intelligence: a fusion poised to transform technology
International Journal of Research and Review, 2021
DOI: 10.52403/ijrr.20210974

The role of artificial intelligence in enhancing big data analytics
Galore International Journal of Applied Sciences and Humanities, 2021

Prabakaran Raghavendran | Artificial Neural Network | Young Scientist Award

Mr. Prabakaran Raghavendran | Artificial Neural Network | Young Scientist Award

Research Scholar, Vel Tech Rangarajan Dr.Sagunthala R&D Institute of Science and Technology (Deemed to be University), India

Prabakaran Raghavendran is a dynamic researcher and Ph.D. candidate at Vel Tech Rangarajan Dr. Sagunthala R&D Institute of Science and Technology, specializing in Fractional Differential Equations, Integral Transforms, Functional Differential Equations, and Control Theory. With a strong academic foundation in Mathematics, he earned an M.Sc. in Mathematics with an impressive CGPA of 9.79 from the same institution in 2022. He is currently pursuing his Ph.D., contributing significantly to the field with several research publications, patents, and international conference presentations. 🌟

Publication Profile

Education:

Prabakaran completed his B.Sc. in Mathematics at Loyola College, Chennai, in 2020 with a CGPA of 9.25. He further advanced his academic career by obtaining an M.Sc. in Mathematics from Vel Tech Rangarajan Dr. Sagunthala R&D Institute of Science and Technology in 2022, where he excelled with a CGPA of 9.79. Currently, he is pursuing his Ph.D. at the same institution, expected to complete in 202X. 🎓📚

Experience:

Prabakaran has been actively engaged in the research and development of advanced mathematical models and algorithms. His experience spans across fractional differential equations, fuzzy analysis, cryptography, and artificial neural networks. Additionally, he has contributed to the development of innovative technologies, holding multiple patents in signal analysis, optimization, and medical applications. His work is widely recognized in the academic and research communities. 💼🔬

Awards and Honors:

Prabakaran’s academic excellence and dedication to research have earned him several prestigious awards, including the Best Paper Presentation Award for his work on Fractional Integro Differential Equations at the 7th International Conference on Mathematical Modelling, Applied Analysis, and Computation (ICMMAAC-24) in Beirut, Lebanon. He is also a life member of both the International Association of Engineers (IAENG) and the International Organization for Academic and Scientific Development (IOASD). 🏅🌍

Research Focus:

Prabakaran’s research focuses on Fractional Differential Equations, Integral Transforms, and Control Theory, with particular attention to their applications in various fields such as cryptography, artificial neural networks, and fuzzy analysis. He has developed new methodologies for solving complex mathematical models and is deeply involved in finding practical solutions for issues such as Parkinson’s disease prognosis, noise reduction in signals, and optimization in robotics. 🔍🔢

Conclusion:

Prabakaran Raghavendran is a passionate and dedicated researcher in the field of Mathematics, with a strong focus on fractional differential equations and control theory. His groundbreaking work in both theoretical and applied mathematics has earned him recognition through publications and patents. With his ongoing research contributions, he continues to push the boundaries of mathematical modeling and its applications in real-world problems. 🌐💡

Publications:

A Study on the Existence, Uniqueness, and Stability of Fractional Neutral Volterra-Fredholm Integro-Differential Equations with State-Dependent Delay. Fractal Fractional, 9 (1), 1-23. (2024) (SCIE-WoS & Scopus) (Q1).

Analytical Study of Existence, Uniqueness, and Stability in Impulsive Neutral Fractional Volterra-Fredholm Equations.  Journal of Mathematics and Computer Science, 38 (3), 313-329. (2024) (WoS & Scopus) (Q1).

Application of Artificial Neural Networks for Existence and Controllability in Impulsive Fractional Volterra-Fredholm Integro-Differential Equations. Applied Mathematics in Science and Engineering, 32 (1), 1-21. (2024) (SCIE-WoS-Scopus).

Existence and Controllability for Second-Order Functional Differential Equations With Infinite Delay and Random Effects.  International Journal of Differential Equations, 5541644, 2024, 1-9. (2024) (WoS & Scopus).

Solving the Chemical Reaction Models with the Upadhyaya Transform. Orient J Chem, 2024; 40(3). (WoS) (WoS).

slimane arbaoui | Artificial Intelligence | Young Scientist Award

Mr. slimane arbaoui | Artificial intellegence | Young Scientist Award

Cube-SDC team, INSA Strasbourg, University of Strasbourg , 24 Bd de la Victoire, Strasbourg, 67000, France, insa strasbourg, France

Slimane Arbaoui is a dedicated final-year Computer Science student at École Supérieure en Informatique (ESI) in Sidi Bel Abbess, Algeria, specializing in Android application development and machine learning. 🎓 His skills span Java-based Android development, data integration, and advanced problem-solving in software, alongside a versatile understanding of multiple programming languages, including Python and Kotlin. Slimane has applied his AI knowledge to impactful projects, even authoring a research paper. 📚 Known for his innovation and strong analytical skills, Slimane is passionate about tackling real-world challenges with technology.

Publication Profile

Scopus

Education

Slimane completed his State Engineering and Master’s degrees in Computer Science at ESI SBA in 2023. 🎓 His academic journey has strengthened his technical expertise and provided a foundation in both theoretical and applied computing, with a focus on machine learning, mobile app development, and web technologies.

Experience

During his internship at INSA-Strasbourg, France 🇫🇷, Slimane applied machine learning to improve battery health prediction, developing models that track and identify factors contributing to battery degradation. At CNAS in Algeria, he gained practical insights into network database applications and web app development. 💻 As a freelancer on Upwork, Slimane developed Android applications and managed web back-end services, demonstrating his versatility in real-world projects.

Research Focus

Slimane’s research interests center on artificial intelligence and machine learning, with a special focus on NLP applications, sentiment analysis, and health data prediction. 🧠 His projects include sentiment analysis and fake news detection in Arabic language datasets, alongside health management applications that leverage data-driven insights to enhance service quality. His work in battery health prediction highlights his proficiency in machine learning model development and evaluation.

Awards and Honours

Slimane holds several certifications, including Microsoft Certified: Azure Fundamentals and the Android Basics Nanodegree. 🏅 His achievements in AI include completing courses on deep learning and machine learning through Kaggle and Coursera, which demonstrate his commitment to continuous learning and professional development.

Publication Top Notes

Dual-model approach for one-shot lithium-ion battery state of health sequence prediction

SOCXAI: Leveraging CNN and SHAP Analysis for Battery SOC Estimation and Anomaly Detection

Data-driven strategy for state of health prediction and anomaly detection in lithium-ion batteries