Rahma Mani | Artificial Intelligence | Women Researcher Award

Ms. Rahma Mani | Artificial Intelligence | Women Researcher Award

PhD student, Escuela Técnica Superior de Ingeniería Informática, ETSII, Spain

Rahma Mani is a dedicated Ph.D. candidate in Electrical Engineering and Computer Science at the University of Seville, Spain, with a deep passion for wireless sensor networks, machine learning, and artificial intelligence. With a strong foundation in electrical engineering from the National Engineering School of Monastir, Tunisia, she has demonstrated her expertise through various academic and professional roles. Rahma has contributed to significant research projects and has a keen interest in innovative technologies.

Publication Profile

 

Strengths for the Award:

  1. Academic Excellence: Rahma is currently pursuing a Ph.D. in Electrical Engineering and Computer Science, focusing on cutting-edge fields such as wireless sensor networks, machine learning, and artificial intelligence. Her educational background is robust and well-aligned with emerging technological fields.
  2. Research Contributions: Rahma has multiple publications in reputable journals and conferences, including a submission to the prestigious Pervasive and Mobile Computing Journal by Elsevier. Her research in wireless sensor networks demonstrates innovation and contributes significantly to the field.
  3. Global Perspective: Rahma’s North African upbringing combined with her international academic and professional experiences in Spain, Italy, France, and Tunisia give her a unique global perspective. This diversity enhances her ability to approach problems from different angles, which is a valuable asset in research.
  4. Technical Skills: She possesses a wide range of digital and programming skills, including proficiency in languages like Java, C++, and MATLAB, as well as experience with technologies such as Vivado and Arduino. These skills are critical for her research and development work.
  5. Leadership and Innovation: Rahma demonstrated leadership in her role as the Electrical Committee leader in the ENIM TEAM, where she led the development of an electric car for an international competition. Her involvement in volunteer activities also highlights her leadership abilities and commitment to social causes.
  6. Language Proficiency: Fluent in English, Arabic, and French, with basic Spanish, Rahma’s multilingual capabilities are a significant asset in collaborative international research.

Areas for Improvement:

  1. Broader Research Exposure: While Rahma has a strong publication record, expanding her research impact by collaborating on interdisciplinary projects or participating in more international conferences could further enhance her profile.
  2. Advanced Certifications: Although Rahma has quality management certifications, pursuing advanced certifications related to her research areas (e.g., specialized AI or wireless communication certifications) could strengthen her expertise.
  3. Industry Collaboration: Increasing her engagement with industry partners, beyond internships, through joint research projects or consulting roles could provide practical applications for her research, enhancing its relevance and impact.

 

🎓 Education:

Rahma is currently pursuing her Ph.D. in Electrical Engineering and Computer Science at the University of Seville, Spain, specializing in wireless sensor networks, machine learning, and artificial intelligence. She earned her Electrical Engineering Diploma from the National Engineering School of Monastir, Tunisia, where she also led a team in designing and developing an electric car for an international competition. Rahma began her academic journey with preparatory engineering studies at the Preparatory Institute for Engineering Studies of Monastir, Tunisia.

💼 Experience:

Rahma has gained extensive experience as an adjunct professor at the Higher Institute of Applied Sciences and Technology of Mahdia, Tunisia, where she taught courses on digital signal processing, converters, and electrical machines. She also worked as a Junior Full Stack Engineer at HRDatabank Tunisia (WILL Group, Japan), contributing to the development of HR web applications. Additionally, Rahma has completed internships at Smart Sensors Systems (3S) in Nancy, France, and the Tunisian Electricity and Gas Company in Sousse, Tunisia.

🔬 Research Focus:

Rahma’s research focuses on wireless sensor networks, particularly in the areas of localization algorithms, edge computing, and FPGA-enhanced systems. She is passionate about applying machine learning and artificial intelligence techniques to improve the efficiency and reliability of sensor networks, especially in large-scale and industrial applications.

🏆 Awards and Honors:

Rahma received a merit-based fellowship to pursue her Ph.D. internship in Italy and Spain, recognizing her outstanding academic and research achievements.

📚 Publication Top Notes:

Localizing Unknown Nodes with an FPGA-Enhanced Edge Computing UAV in Wireless Sensor Networks: Implementation and Evaluation (2024)

Improved 3D localization algorithm for large-scale wireless sensor networks (2023).

Improved Distance vector-based Kalman Filter localization algorithm for wireless sensor network (2023) .

CRT-LoRa: An efficient and reliable MAC scheme for real-time industrial applications (2023).

Improved Least-Square DV-Hop Algorithm for Localization in Large Scale Wireless Sensor Network (2022) .

 

Conclusion:

Rahma Mani is a well-qualified candidate for the Research for Women Researcher Award. Her solid academic background, impressive research contributions, technical expertise, and leadership qualities make her a strong contender. With continued focus on expanding her research impact and industry collaborations, she is likely to make significant contributions to the field of Electrical Engineering and Computer Science, particularly in the areas of wireless sensor networks and AI. Her application for the award would be well-justified, showcasing both her achievements and potential for future advancements.

 

 

Ao Guo | Artificial Intelligence | Best Researcher Award

Mr. Ao Guo | Artificial Intelligence | Best Researcher Award

Master’s student, Xinjiang University, China

📚 Ao Guo is a dedicated postgraduate researcher at Xinjiang University with a focus on the innovation, optimization, and application of object detection technology. Currently pursuing a master’s degree in Electronic Information, Ao Guo has a robust background in computer vision, deep learning, pattern recognition, and image processing. He is committed to enhancing the accuracy and efficiency of object detection algorithms, contributing to both academia and industry.

Profile

Google Scholar

 

Education

🎓 Master’s Degree in Electronic Information – Xinjiang University, Urumqi, China
Ao Guo is advancing his studies in Electronic Information, focusing on the intersection of computer vision and deep learning to address real-world problems.

Experience

Ao Guo has been deeply involved in research aimed at optimizing deep learning models for intelligent weed management in agricultural environments. His work on a lightweight weed detection model, which incorporates global contextual features, is recognized for its high detection speed and accuracy, particularly suited for resource-constrained edge devices.

Research Interests

Ao Guo’s research interests encompass weed detection, deep learning, YOLO (You Only Look Once) models, attention mechanisms, and the development of lightweight networks. His innovative approach to integrating global information capture mechanisms into detection algorithms stands out in his field.

Awards

Ao Guo’s contributions to the field have been acknowledged through his publications and patent. Notably, he has published a paper in the highly reputed journal “Engineering Applications of Artificial Intelligence,” and he holds a patent for a lightweight weed detection method and device.

Publications

A lightweight weed detection model with global contextual joint features. Engineering Applications of Artificial Intelligence, 136, 108903. Link – Cited by: Article on Engineering Applications of Artificial Intelligence.

Ali Raza | artificial intelligence | Best Researcher Award

Mr. Ali Raza | artificial intelligence | Best Researcher Award

Lecturer, The University of Lahore, Pakistan

Ali Raza is a dedicated research scholar specializing in data science, known for his expertise in machine learning and deep learning applications. With a strong academic background and extensive professional experience in software development, he has contributed significantly to research in artificial intelligence and health informatics.

Profile

Google Scholar

📚 Education:

Ali completed his Bachelor of Science in Computer Science at KFUEIT after graduating from Iqra Degree College with a degree in Pre-Engineering. He further pursued his passion for computer science by earning a Master’s degree in Computer Science from KFUEIT, where his research focused on novel approaches in deep learning for image detection.

💼 Experience:

Ali’s professional journey includes roles as a Research Assistant at KFUEIT, where he published research articles on artificial intelligence. He has also worked as a Desktop App Developer at DexDevs Company and as a Full Stack Python Developer at BuiltinSoft Company, gaining expertise in business application development and machine learning frameworks.

🔬 Research Interests:

Ali’s research interests revolve around data science, particularly in machine learning model optimization, health informatics, and artificial intelligence applications in diverse domains such as pregnancy health analysis and network security.

🏆 Awards:

Ali has contributed significantly to research, evident from his publications and contributions as a peer reviewer for IEEE Access and PLOS ONE, highlighting his recognition in the academic community.

📄 Publications:

Ensemble learning-based feature engineering to analyze maternal health during pregnancy and health risk prediction, Plos one, 2022 (cited 46 times)

A novel deep learning approach for deepfake image detection, Applied Sciences, 2022 (cited 58 times)

Predicting employee attrition using machine learning approaches, Applied Sciences, 2022 (cited 44 times)

A novel methodology for human kinematics motion detection based on smartphones sensor data using artificial intelligence, Technologies, 2023 (cited 23 times)

Novel class probability features for optimizing network attack detection with machine learning, IEEE Access, 2023