Assist. Prof. Dr. Joaquim Casaca | Artificial Intelligence | Best Researcher Award

Assist. Prof. Dr. Joaquim Casaca | Artificial Intelligence | Best Researcher Award

Prof, IADE, European University, Portugal

Joaquim António A. Casaca is an accomplished academic and professional in management, specializing in information security and marketing. He currently serves as an Assistant Professor at IADE, European University, Lisbon. Known for his expertise in management and economics, Joaquim has contributed extensively to research in areas such as entrepreneurial competence, marketing, and information security.

Publication Profile

Scopus

ORCID

🎓 Education Background

Joaquim Casaca holds a PhD in Management (2010) from Universidade Lusíada de Lisboa, with a thesis focusing on information security management in Portuguese SMEs. He earned a Master’s in Management (1999) and an MBA (1997) from ISEG – Lisbon School of Economics and Management, University of Lisbon. Additionally, he completed a Postgraduate degree in Information Sciences and Technologies for Organizations (1996) from ISEG, and holds a BSc in Economics (1982) from the same institution.

💼 Professional Experience

Since 2010, Joaquim has been an Assistant Professor at IADE, European University (Lisbon). Previously, he held academic roles at the University of Lisbon and Lusófona University, and financial positions in notable companies such as PT Multimédia, Portugal Telecom, and Companhia Portuguesa Rádio Marconi. His broad experience spans academia, finance, and management consultancy.

🏆 Awards and Honors

Joaquim received the Banco Espírito Santo Award in 1999 at ISEG for his outstanding Master’s thesis. This recognition highlights his early excellence and research capability in management.

🔍 Research Focus

His research interests center on management, information security, entrepreneurial competence, and marketing. Recent work includes studies on game-based learning’s effect on entrepreneurial skills and the role of neuroscience in economics and marketing. Joaquim’s interdisciplinary approach integrates management theory with emerging technologies and consumer behavior.

🔚 Conclusion

With a strong academic foundation and a versatile professional background, Joaquim A. Casaca is a respected figure in management and information security education. His ongoing contributions advance the understanding of how technology and management intersect in organizational contexts.

📚 Top Publications

  • The effect of game-based learning on the development of entrepreneurial competence among higher education students
    Daniel, A. D., Negre, Y., Casaca, J. A., Patricio, R., & Tsvetcoff, R. (2024). Education + Training.
    DOI: 10.1108/ET-10-2023-0448 — Cited by 3 articles

  • Neuroscience Applied to Economics and Marketing: A bibliometric Review of the Literature
    Casaca, J. A. (2024). International Journal of Business Innovation and Research.
    DOI: 10.1504/ijbir.2024.10066189

  • The determinants of non-consumption of disposable plastic: application of an extended theory of planned behaviour
    Casaca, J. A. (2024). International Journal of Business Environment.
    DOI: 10.1504/IJBE.2024.135693

  • Relational Marketing and Customer Satisfaction: A Systematic Literature Review
    Casaca, J. A. (2023). Estudios Gerenciales.
    DOI: 10.18046/j.estger.2023.169.6218

  • Relationship Marketing and Customer Retention – A Systematic Literature Review
    Casaca, J. A. (2023). Studies in Business and Economics.
    DOI: 10.2478/sbe-2023-0044

 

Dr. Uddalak Mitra | Machine learning | Best Researcher Award

Dr. Uddalak Mitra | Machine learning | Best Researcher Award

Assistant Professor, JIS College of Engineering, India

Dr. Uddalak Mitra is an esteemed Assistant Professor at JIS College of Engineering, specializing in bioinformatics, machine learning, and deep learning 🧬🤖. With a strong academic foundation and a passion for research, he has significantly contributed to the intersection of computational intelligence and biological sciences. His expertise lies in decoding DNA, RNA, and protein sequences using cutting-edge AI techniques, paving the way for advancements in healthcare and genomics. Dr. Mitra’s work seamlessly blends theoretical knowledge with real-world applications, making impactful strides in both academia and industry.

Publication Profile

Google Scholar

🎓 Education:

Dr. Mitra has built a solid academic background in computational sciences, equipping himself with the expertise required to address complex biological challenges. His educational journey has provided him with the technical prowess to integrate artificial intelligence into biomedical research.

💼 Experience:

As an Assistant Professor at JIS College of Engineering, Dr. Mitra actively engages in research and mentoring, shaping the next generation of scientists. His work focuses on applying machine learning models to analyze biological data, improving early disease detection methodologies. Additionally, he has authored several research papers and contributed to the academic community through his innovative studies.

🏆 Awards and Honors:

Dr. Mitra has made commendable contributions to scientific research, earning recognition for his published works. He holds 9 patents, showcasing his dedication to innovation. His memberships in esteemed organizations like IFERP and ISTE reflect his commitment to professional development and research excellence.

🔬 Research Focus:

His research primarily revolves around bioinformatics, machine learning, and deep learning. He explores information-theoretic tools for biological sequence analysis, integrating artificial intelligence to derive meaningful insights from genomic data. His recent studies focus on clinical applications of AI, particularly in disease diagnosis and personalized medicine.

🔍 Conclusion:

Dr. Uddalak Mitra is a pioneering researcher dedicated to bridging the gap between bioinformatics and artificial intelligence. His contributions to genomic research, coupled with his expertise in AI-driven disease diagnosis, make him a valuable asset to the scientific community. With a strong foundation in computational biology, he continues to push the boundaries of research, striving for innovations that benefit both medicine and technology.

📚 Publications:

Leveraging AI and Machine Learning for Next-Generation Clinical Decision Support Systems (CDSS) – Published in AI-Driven Innovation in Healthcare Data Analytics, 2025.

Cognitive Handwriting Insights for Alzheimer’s Diagnosis: A Hybrid FrameworkInformation, 2025

Integrated System for Disease Detection Using Semiconductor-Based Gas Sensors and AI/MLIN Patent A61B0005080000, 2025

Significance of AI/ML Wearable Technologies for Education and TeachingWearable Devices and Smart Technology for Educational Teaching Assistance, 2025

Integrating AI/ML With Wearable Devices for Monitoring Student Mental HealthWearable Devices and Smart Technology for Educational Teaching Assistance, 2025

The Evolution of Entrepreneurship in the Age of AIAdvanced Intelligence Systems and Innovation in Entrepreneurship, 2024

A Novel Algorithm for Genomic STR Mining: Application to Phylogeny Reconstruction and Taxa IdentificationInternational Journal of Bioinformatics Research and Applications, 2024

Narmilan Amarasingam | Artificial Intelligence | Best Researcher Award

Mr. Narmilan Amarasingam | Artificial Intelligence | Best Researcher Award

PhD student, Queensland University of Technology, Australia

Researcher specializing in drone-based remote sensing solutions for environmental and surveillance needs, focusing on precision agriculture and biosecurity. Expertise includes UAV remote sensing, artificial intelligence, and multispectral/hyperspectral image processing. Currently pursuing a PhD in Precision Agriculture at Queensland University of Technology.

Profile

Google Scholar

 

🎓 Education

PhD: Precision Agriculture, Queensland University of Technology (2021 – Present). MSc: Agricultural Engineering, Eastern University, Sri Lanka (2016 – 2018). BSc: Agriculture, Agricultural Engineering, Eastern University, Sri Lanka (2010 – 2015). BIT: Software Engineering, University of Colombo School of Computing, Sri Lanka (2011 – 2015)

🔍 Experience

Research Assistant at Charles Sturt University and Sunshine Coast Council on projects integrating AI and drone technology for environmental monitoring and invasive species detection.

🏆 Awards

QUT/Accelerate Higher Education Development Expansion and Development (AHEAD) World Bank Project Scholarship. Vice Chancellor’s Award for Early Career Researcher, Faculty of Technology, 2022.

🌍 Research Interests

Precision Agriculture, UAV-based Remote Sensing, Multispectral Image Processing, AI, Biosystems Engineering, Environmental Management.

📚 Publications

Co-authored numerous peer-reviewed articles in Q1 and non-Q1 ranking journals on topics related to UAV-based remote sensing and AI applications in agriculture and environmental management.

A review of UAV platforms, sensors, and applications for monitoring of sugarcane crops
Predicting canopy chlorophyll content in sugarcane crops using machine learning algorithms and spectral vegetation indices derived from UAV multispectral imageryDetection of white leaf disease in sugarcane using machine learning techniques over UAV multispectral images
Detection of White Leaf Disease in Sugarcane Crops Using UAV-Derived RGB Imagery with Existing Deep Learning Models
N Amarasingam, F Gonzalez, ASA Salgadoe, J Sandino, K Powell
E-agricultural concepts for improving productivity: A review

JAINUL FATHIMA | Artificial Intelligence | Best Researcher Award

Dr. JAINUL FATHIMA | Artificial Intelligence | Best Researcher Award

Associate Professor, Francis Xavier Engineering College, India

📘 Dr. A. Jainul Fathima, B.Tech., M.E., Ph.D., is an innovative professor with a strong passion for fostering academic development and success for every student. With 12 years of combined experience in teaching, research, and industry, she excels in implementing technology-based curriculum delivery and assessment tools.

Profile

Scopus

Education🎓

Dr. Fathima holds a Ph.D. in Computational Drug Discovery from Kalasalingam Academy of Research and Education, where her interdisciplinary research focused on developing anti-viral drugs for dengue targets using AI techniques. She earned her M.E. in Computer Science and Engineering from Anna University with an 83% aggregate and a B.Tech. in Information Technology from Anna University with a 75% aggregate.

Experience 🛠️

👩‍🏫 With 12 years of total experience, Dr. Fathima has 6 years of teaching experience, currently serving as an Assistant Professor at Francis Xavier Engineering College. She has previously worked at K.L.N. College of Information Technology, Sethu Institute of Technology, and Kalasalingam University. Her research experience includes 3 years as a UGC Research Fellow and 2 years of teaching and instructing in Qatar. She also has 1 year of industrial experience as a Research Assistant in Computer-Aided Drug Design.

Research Interests 🔍

🔬 Dr. Fathima’s research interests are in the areas of computational drug discovery, machine learning, artificial intelligence, and bioinformatics. Her work focuses on applying advanced computational techniques to predict protein interactions and develop therapeutic solutions for diseases like dengue and Alzheimer’s.

Awards 🏆

🏆 Dr. Fathima has received several accolades, including the “Research Associate Award” from the Anti-viral Research Society in 2022, “Best Paper Award” at INCODS ’17 and NCAC ’09, and the “Outstanding Student Award” from Mepco Schlenk Engineering College.

Publications 📚

A comprehensive review on heart disease prognostication using different artificial intelligence algorithms, Computer Methods in Biomechanics and Biomedical Engineering, February 2024. Cited by 1.5

Alzheimer’s Patients Detection using Support Vector Machine (SVM) with Quantitative Analysis, Neuroscience Informatics, 2021. Cited by 0.5

IoT-Based Intelligent System for Garbage Level Monitoring in Smart Cities, International Conference on IoT, Communication and Automation Technology, 2023. Scopus Indexed

Intelligent Deep Learning Framework for Breast Cancer Prediction using Feature Ensemble Learning, IEEE Global Conference for Advancement in Technology, 2023. Scopus Indexed

Compressing Biosignal for diagnosing chronic diseases, Journal of Physics: Conference Series, 2021. Scopus Indexed