Prof. Dr. Hamid Arabnia | Data Science | Best Researcher Award

Prof. Dr. Hamid Arabnia | Data Science | Best Researcher Award

Professor Emeritus, University of Georgia, United States

Dr. Hamid R. Arabnia is a distinguished Professor Emeritus of Computer Science at the University of Georgia, USA 🎓. With a Ph.D. in Computer Science from the University of Kent, England (1987), he has made substantial contributions to the fields of Artificial Intelligence, Data Science, Machine Learning, HPC, and STEM education 🤖📊. Over his career, he has mentored 23 Ph.D. students and played a vital role in advancing computational science and intelligence. He has been an active advocate against cyber-harassment and cyberbullying, winning a landmark lawsuit in 2017–2018, securing a $3 million ruling ⚖️. Prof. Arabnia has an extensive publication record with 300+ peer-reviewed papers and 200+ edited research books, establishing himself among the top 2% most impactful scientists, as recognized by Stanford University 🌍📚.

Publication Profile

🎓 Education

Dr. Arabnia earned his Ph.D. in Computer Science from the University of Kent, England (1987) 🏛️. His research during his doctoral studies laid the foundation for his pioneering contributions in supercomputing and artificial intelligence 🤖💡.

💼 Experience

Dr. Arabnia has been with the University of Georgia since 1987, contributing as a Professor, Graduate Coordinator, and Research Director 🏫. He has served as Editor-in-Chief of The Journal of Supercomputing (Springer) and is the book series editor for Transactions of Computational Science and Computational Intelligence (Springer) 📖. His leadership has also extended to roles as a senior adviser for global corporations and National Science Foundation (NSF) committees for over 10 years 🏆.

🏅 Awards and Honors

Prof. Arabnia has received numerous prestigious awards, including recognitions from IEEE BIBE, ACM SIGAPP, and IMCOM 🏅. His legal victory against cyber-harassment was a landmark case, setting an important precedent in the U.S. legal system ⚖️. His contributions to STEM education and securing $12 million in funding for graduate research at UGA have also been widely recognized 💰📚.

🔬 Research Focus

Dr. Arabnia’s research spans Data Science, AI, HPC, Machine Learning, Imaging Science, and Compute-Intensive Problems 🤖📊. He has been actively involved in cybersecurity legislation advocacy, focusing on cyberstalking and online harassment 🔒. His latest work integrates deep learning, upsampling techniques, and AI-driven smart city applications 🌍.

🔚 Conclusion

Dr. Hamid R. Arabnia is a highly influential researcher, educator, and advocate for ethical AI and cybersecurity 🏆. With over 500 publications and millions in research funding, his contributions have shaped modern supercomputing, artificial intelligence, and digital security 🔬. Recognized among the top 2% impactful scientists globally, his work continues to inspire the next generation of AI and computer science researchers 🚀.

📚 Publications

Comprehensive Analysis of Random Forest and XGBoost Performance with SMOTE, ADASYN, and GNUS Upsampling under Varying Imbalance Levels (2025) – Preprint

A New Efficient Hybrid Technique for Human Action Recognition Using 2D Conv-RBM and LSTM with Optimized Frame Selection (2025) – Technologies | DOI 📑

SWAG: A Novel Neural Network Architecture Leveraging Polynomial Activation Functions for Enhanced Deep Learning Efficiency (2024) – IEEE Access | DOI 📖

Hyperparameter Optimization and Combined Data Sampling Techniques in Machine Learning for Customer Churn Prediction: A Comparative Analysis (2023) – Technologies | DOI 📜

A Review of Deep Transfer Learning and Recent Advancements (2023) – Technologies | DOI 📘

Embodied AI-Driven Operation of Smart Cities: A Concise Review (2021) – TechRxiv | DOI 🌍

Assoc. Prof. Dr. Yun-Cheng Tsai | Data Analytics | Best Researcher Award

Assoc. Prof. Dr. Yun-Cheng Tsai | Data Analytics | Best Researcher Award

Associate Professor, National Taiwan Normal University, Taiwan

Dr. Yun-Cheng Tsai is a distinguished researcher and educator specializing in blockchain technology, financial vision, artificial intelligence, and educational analytics. He is currently a faculty member at the National Taiwan Normal University, Department of Technology Application and Human Resource Development. With a strong background in computer science and information engineering, Dr. Tsai has contributed significantly to various domains, including educational metaverse environments, reinforcement learning in finance, and data privacy protection. His interdisciplinary research integrates technology and human resource development, making a substantial impact on academia and industry. 🌏💡

Publication Profile

🎓 Education

Dr. Tsai earned his Ph.D. in Computer Science and Information Engineering from National Taiwan Normal University (2009-2016) 🎓. His academic journey also includes prestigious research stays at the Max Planck Institute for the History of Science and Humboldt-Universität zu Berlin, where he collaborated on pioneering technological advancements in data science and blockchain applications. 🌍📖

💼 Experience

With a rich academic career spanning multiple institutions, Dr. Tsai has held faculty positions at several esteemed universities in Taiwan. Before joining National Taiwan Normal University in 2022, he was affiliated with Soochow University (2019-2022), National Taiwan University (2017-2019), and National Taipei University of Business (2016-2017). His expertise in blockchain and AI applications has also led to extensive research collaborations globally. 🏫🔬

🏆 Awards and Honors

Dr. Tsai’s contributions to blockchain technology, financial data security, and educational analytics have earned him recognition in the research community. His invited research positions at the Max Planck Institute and Humboldt-Universität zu Berlin highlight his international reputation. 🏅📜

🔬 Research Focus

Dr. Tsai’s research spans blockchain applications in financial systems, reinforcement learning for trading strategies, and AI-driven educational environments. He has developed innovative solutions for transparency in carbon credit markets, interactive learning tools for blockchain education, and privacy-preserving financial vision models. His work is widely cited and influences both academic and industry advancements. 🚀📊

🔍 Conclusion

Dr. Yun-Cheng Tsai is a leading academic in blockchain technology, AI, and educational analytics, making significant contributions to transparency in financial markets, metaverse learning, and AI-powered trading strategies. His global collaborations and impactful research continue to shape the future of technology and education. 🌟📡

🔗 Publications

Enhancing Transparency and Fraud Detection in Carbon Credit Markets Through Blockchain-Based Visualization Techniques – Electronics (2025) 🔗 DOI: 10.3390/electronics14010157

Empowering Young Learners to Explore Blockchain with User‐Friendly Tools: A Method Using Google Blockly and NFTs – IET Blockchain (2024) 🔗 DOI: 10.1049/blc2.12055

Empowering Students Through Active Learning in Educational Big Data Analytics – Smart Learning Environments (2024) 🔗 DOI: 10.1186/s40561-024-00300-1

Learner-Centered Analysis in Educational Metaverse Environments: Exploring Value Exchange Systems Through Natural Interaction and Text Mining – Journal of Metaverse (2023) 🔗 DOI: 10.57019/jmv.1302136

Financial Vision-Based Reinforcement Learning Trading Strategy – Analytics (2022) 🔗 DOI: 10.3390/analytics1010004

The Protection of Data Sharing for Privacy in Financial Vision – Applied Sciences (2022) 🔗 DOI: 10.3390/app12157408

Dynamic Deep Convolutional Candlestick Learner – arXiv (2022) 🔗 Scopus ID: 85123711664

A Pricing Model with Dynamic Credit Rating Transition Matrices – Journal of Risk Model Validation (2021) 🔗 DOI: 10.21314/JRMV.2021.007

Md. Emran Biswas | Data science | Best Researcher Award

Mr. Md. Emran Biswas | Data science | Best Researcher Award

Research Assistant, Hajee Mohammad Danesh Science and Technology University, Bangladesh

🌟 Md. Emran Biswas, hailing from Dinajpur, Bangladesh, is a passionate researcher and technologist specializing in machine learning, optimization algorithms, and their societal applications. He has actively contributed to predictive analysis, bioinformatics-based drug discovery, and developing AI solutions for global good. As a skilled programmer and researcher, Emran’s work has earned recognition through multiple publications, accolades, and groundbreaking projects in his field.

Publication Profile

Scopus

Education

🎓 Md. Emran Biswas completed his B.Sc. in Electronics and Communication Engineering at Hajee Mohammad Danesh Science and Technology University (HSTU), Dinajpur, Bangladesh, from March 2019 to November 2024, with an impressive CGPA of 3.412/4.00. His academic journey is marked by a focus on deep learning, predictive modeling, and optimization algorithms.

Experience

💼 Emran served as a Research Assistant at Petarhub and DIOT Lab, HSTU, contributing to machine learning, predictive modeling, and optimization projects. His notable achievements include developing the ApexBoost Regression model, managing large datasets, and publishing impactful research in reputed journals like IEEE and Electronics.

Research Interests

🔍 Emran’s research focuses on machine learning, optimization algorithms, and their transformative applications in areas like bioinformatics-based drug discovery, predictive analysis, and societal challenges. His work aligns with the vision of ‘AI for Good,’ driving impactful innovation.

Awards

🏆 Emran has earned recognition for his innovative projects, including First Runner-Up at the Project Exhibition 2022 for his “Face Detection-Based Attendance System” and Second Runner-Up in 2023 for his “AI-Based Health Checking System.” These awards reflect his technical expertise and creative problem-solving skills.

Publications

Machine Learning Approach to Estimate Requirements for Target Productivity of Garments Employees. IEEE ICEEICT 2024 (Cited by: 5)

An Effective Data-Driven Approach to Predict Bike Rental Demand. Google Scholar (Cited by: 12)

Spatio-Temporal Feature Engineering and Selection-Based Flight Arrival Delay Prediction Using Deep Feedforward Regression Network. Electronics, 13(24), p.4910 (Cited by: 9)

 

Assoc. Prof. Dr.Pabrício Lopes | Data Science | Best Researcher Award

Assoc. Prof. Dr. Pabrício Lopes | Data Science | Best Researcher Award

Professor, UFRPE, Brazil

🌟 Pabrício Marcos Oliveira Lopes is a dedicated scholar specializing in Remote Sensing, Agrometeorology, and Physical Geography. He is a Professor of Agronomy at the Federal Rural University of Pernambuco (UFRPE) in Recife, Brazil, contributing significantly to the fields of geospatial analysis and climate studies. With over 62 impactful publications, Dr. Lopes is a leader in exploring environmental phenomena, emphasizing sustainability and climate adaptation. 📚🌍

Publication Profile

ORCID

Education

🎓 Dr. Lopes earned his Ph.D. in Remote Sensing from the National Institute for Space Research (INPE) in 2006. He holds an M.Sc. in Agrometeorology from the Federal University of Campina Grande (UFCG, 1999) and dual undergraduate degrees in Meteorology (UFCG, 1997) and Physics (UEPB, 1999). His educational journey showcases a robust interdisciplinary expertise in physical and environmental sciences. 📊🌤️

Experience

🏫 Dr. Lopes serves as a Professor of Agronomy at UFRPE, where he integrates research and teaching to address agricultural and environmental challenges in Brazil’s semi-arid regions. His expertise includes geospatial technologies, climate modeling, and phenological monitoring, making him a valuable contributor to academia and applied science. 🌾🛰️

Research Interests

📖 Dr. Lopes’ research focuses on phenological monitoring, aridity conditions, climate extremes, and desertification, with a particular emphasis on the Brazilian semi-arid region. His work leverages satellite data, GIS modeling, and time-series analysis to develop innovative solutions for environmental monitoring and sustainable agriculture. 🌱📡

Awards

🏆 Dr. Lopes has received recognition for his academic contributions, though specific awards were not listed. His significant impact in climate studies and geospatial research is widely acknowledged in the scientific community. 🌟🎖️

Publications

Phenological Monitoring of Irrigated Sugarcane Using Google Earth Engine, Time Series, and TIMESAT in the Brazilian Semi-Arid
AgriEngineering, 2024-10-18 | DOI: 10.3390/agriengineering6040217
Cited by: Information not available.

Influência de eventos climáticos extremos na ocorrência de queimadas e no poder de regeneração vegetal
Revista Brasileira de Geografia Física, 2024-03-14 | DOI: 10.26848/rbgf.v17.2.p1098-1113
Cited by: Information not available.

Geospatial Insights into Aridity Conditions: MODIS Products and GIS Modeling in Northeast Brazil
Hydrology, 2024-02-26 | DOI: 10.3390/hydrology11030032
Cited by: Information not available.

Assessment of Desertification in the Brazilian Semiarid Region Using Time Series of Climatic and Biophysical Variables
Revista Brasileira de Geografia Física, 2023-12-29 | DOI: 10.26848/rbgf.v16.6.p3424-3444
Cited by: Information not available.