Avraham Lalum | Machine Learning | Best Researcher Award

Mr. Avraham Lalum | Machine Learning | Best Researcher Award

PhD | University of Córdoba | Israel

Avraham (Avi) Lalum is a distinguished legal scholar and researcher specializing in the intersection of real estate law, artificial intelligence, and conflict resolution. His research explores advanced AI-driven models for risk management in real estate transactions, integrating decision-oriented mediation (DOM), behavioral analytics, and deep learning to enhance investment decision frameworks. Lalum’s scholarly contributions bridge the gap between legal regulation and computational modeling, offering innovative methodologies for explainable AI in property law, negotiation, and human–machine interaction. His studies emphasize how artificial intelligence can simulate human reasoning to mitigate financial risk and promote fairness in high-stakes negotiations. His works are widely recognized in Scopus and Web of Science-indexed journals, contributing significantly to the fields of law, data science, and behavioral AI. With a growing academic impact reflected in over 300 citations and an h-index of 6 on Scopus (and 9 on Google Scholar), Lalum’s publications demonstrate both theoretical depth and practical application in LegalTech and AI ethics.

Profile

ORCID

Featured Publications 

Lalum, A., López del Río, L. C., & Villamandos, N. C. (2024). Synthetic reality mapping of real estate using deep learning-based object recognition algorithms. SN Business & Economics, Springer.
Lalum, A., Caridad López del Río, L., & Ceular Villamandos, N. (2025). Multi-dimensional AI-based modeling of real estate investment risk: A regulatory and explainable framework for investment decisions. Mathematics, MDPI.

 

Assist. Prof. Dr. Mehtab Alam | Artificial Intelligence | Best Researcher Award

Assist. Prof. Dr. Mehtab Alam | Artificial Intelligence | Best Researcher Award

Assist. Prof. Dr. Mehtab Alam |Assistant Professor | Delhi University | India

Dr. Mehtab Alam is an accomplished IT professional and academic specializing in Artificial Intelligence (AI), Internet of Things (IoT), Cyber Forensics, and Information Security. His research primarily focuses on developing AI-based smart IoT frameworks for intelligent healthcare systems, with a strong emphasis on predictive modeling, machine learning integration, and cloud-based data analytics. His scholarly contributions demonstrate a multidisciplinary approach combining computer science, data-driven healthcare innovation, and digital transformation. He has explored diverse research areas including smart city technologies, blockchain applications in e-governance, cybersecurity frameworks, and the application of swarm intelligence in network optimization. Dr. Alam has published extensively in reputed international journals and conferences, contributing to advancements in AI-driven sustainable systems and smart healthcare solutions. His works reflect technical depth and practical applicability, addressing modern challenges in digital infrastructure, public health informatics, and secure communication systems. He has authored 15 Scopus-indexed publications, with 30 Scopus citations and an h-index of 4. On Google Scholar, his research has received 256 citations with an h-index of 10 and an i10-index of 11, showcasing his growing academic influence.

Publication Profile

Scopus | ORCID | Google Scholar

Featured Publications

Alam, M., Khan, E. R., Alam, A., Siddiqui, F., & Tanweer, S. (2023). The DIABACARE CLOUD: Predicting diabetes using machine learning. Acta Scientiarum Technology, 46(1).

Alam, M., Khan, I. R., Alam, A., Siddiqui, F., & Tanweer, S. (2023). Smart healthcare: Making medicine intelligent. Journal of Propulsion Technology, 44(3).

Alam, M., Khan, R., Alam, A., Siddiqui, F., & Tanweer, S. (2023). AI for sustainable smart city healthcare. China Petroleum Processing and Petrochemical Technology Catalyst Research, 23(2), 2245–2258.

Ansari, A. A., Narain, L., Prasad, S. N., & Alam, M. (2022). Behaviour of motion of infinitesimal variable mass oblate body in the generalized perturbed circular restricted three-body problem. Italian Journal of Pure and Applied Mathematics, 47, 221–239.

Alam, M., Parveen, S. (2021). Shipment delivery and COVID-19: An Indian context. International Journal of Advanced Engineering Research and Science, 8(8), 145–154.

Prof. Dr. Mohamed Maher Ben Ismail | Artificial Intelligence | Best Researcher Award

Prof. Dr. Mohamed Maher Ben Ismail | Artificial Intelligence | Best Researcher Award

Prof. Dr. Mohamed Maher Ben Ismail, King Saud University, Saudi Arabia

Dr. Mohamed Maher Ben Ismail is a distinguished full professor in the Computer Science Department at the College of Computer and Information Sciences, King Saud University, Riyadh, Saudi Arabia . With a prolific academic and research background spanning over two decades, Dr. Ben Ismail is recognized for his contributions in artificial intelligence, image processing, and data mining. His work bridges theory and practical applications in machine learning and statistical modeling, making him a leading voice in his field 🌐📚.

Professional Profile

Google Scholar

Scopus

🎓 Education Background

Dr. Ben Ismail holds a Ph.D. in Computer Engineering and Computer Science from the University of Louisville, USA (2011) 🇺🇸, where his dissertation focused on image annotation and retrieval using multi-modal feature clustering. He also earned a Master’s in Automatic and Signal Processing and a Bachelor’s in Electrical Engineering from the National School of Engineering of Tunis, Tunisia 🇹🇳. His early academic journey was distinguished by excellence in mathematics, physics, and competitive engineering entrance exams 🧠📘.

🧑‍🏫 Professional Experience

Dr. Ben Ismail currently serves as a Full Professor at King Saud University (2021–present), following roles as Associate Professor (2017–2021) and Assistant Professor (2011–2017). Previously, he worked as a Design & Development Engineer at STMicroelectronics, Tunisia, and as a Graduate Research Assistant at the University of Louisville’s Multimedia Research Lab, where he pioneered work on CBIR systems and integrated machine learning approaches. His academic role includes supervising thesis work, lecturing across AI, ML, algorithm design, and image processing 💼👨‍🏫.

🏆 Awards and Honors

Throughout his career, Dr. Ben Ismail has received numerous accolades, including the Best Faculty Member Award (2017) at King Saud University, the Graduate Dean’s Citation Award (2011), and the IEEE Outstanding CECS Student Award (2011) 🥇. He is also a member of the Golden Key International Honor Society and received early recognition through his promotion at STMicroelectronics and various graduate assistantships and scholarships 🎖️.

🔬 Research Focus

Dr. Ben Ismail’s research interests lie in Artificial Intelligence, Machine Learning, Pattern Recognition, Image Processing, Temporal Data Mining, and Information Fusion 🤖🧠. His work emphasizes robust statistical modeling and intelligent systems design, often applied to domains like IoT security, brain tumor detection, real estate prediction, and hyperspectral imaging. His prolific publication record in top-tier journals and conferences highlights his continuous contributions to advanced computational techniques and interdisciplinary innovation 📊📈.

📌 Conclusion

With a solid educational foundation, impactful research contributions, and extensive teaching experience, Dr. Mohamed Maher Ben Ismail stands as a key figure in advancing AI-driven solutions in academia and industry. His dedication to excellence and innovation marks him as a thought leader and an inspirational academic voice in the global computer science community 🌟🧑‍🔬.

📚 Top Publications Notes

  1. YOLO-Act: Unified Spatiotemporal Detection of Human Actions Across Multi-Frame Sequences
    📅 Published in: Sensors, 2025
    🔍 Cited by: 12 articles (as of mid-2025)
    🧠 Highlights: Proposes a YOLO-based system for recognizing actions across video frames.

  2. MRI-Based Meningioma Firmness Classification Using an Adversarial Feature Learning Approach
    📅 Published in: Sensors, 2025
    🔍 Cited by: 9 articles
    🧠 Highlights: Enhances brain tumor classification using deep adversarial networks.

  3. RobEns: Robust Ensemble Adversarial Machine Learning Framework for Securing IoT Traffic
    📅 Published in: Sensors, 2024
    🔍 Cited by: 18 articles
    🔐 Highlights: Focuses on adversarial ML methods to enhance IoT network security.

  4. Skin Cancer Recognition Using Unified Deep Convolutional Neural Networks
    📅 Published in: Cancers, 2024
    🔍 Cited by: 25 articles
    🧬 Highlights: Applies CNNs to early skin cancer detection using medical images.

  5. A Deep Learning Approach for Brain Tumor Firmness Detection Based on Five YOLO Versions
    📅 Published in: Computation, 2024
    🔍 Cited by: 14 articles
    💡 Highlights: Compares YOLOv3 to YOLOv7 models for brain scan interpretation.

  6. Toward an Improved Machine Learning-based Intrusion Detection for IoT Traffic
    📅 Published in: Computers, 2023
    🔍 Cited by: 20 articles
    🔒 Highlights: Develops a secure ML framework to prevent intrusions in smart devices.

  7. Simultaneous Deep Learning-based Classification and Regression for Company Bankruptcy Prediction
    📅 Published in: Journal of Business & Economic Management, 2023
    🔍 Cited by: 8 articles
    💼 Highlights: Innovative DL model integrating financial classification with regression.

  8. Novel Dual-Constraints Based Semi-Supervised Deep Clustering Approach
    📅 Published in: Sensors, 2025
    🔍 Cited by: 6 articles
    📊 Highlights: Enhances clustering accuracy using semi-supervised constraints in DL.

  9. Better Safe than Never: A Survey on Adversarial Machine Learning Applications towards IoT Environment
    📅 Published in: Applied Sciences, 2023
    🔍 Cited by: 22 articles
    🔍 Highlights: Comprehensive survey exploring adversarial ML attacks and defense for IoT.

  10. Detecting Insults on Social Network Platforms Using a Deep Learning Transformer-Based Model
    📅 Published in: IGI Global Book Chapter, 2025
    🔍 Cited by: 11 articles
    🌐 Highlights: Uses transformer models to detect hate speech and insults online.