Mr. Md Tanvir rahman Tarafder | Information Technology | Best Researcher Award

Mr. Md Tanvir rahman Tarafder | Information Technology  | Best Researcher Award

Data analysis, Westcliff university, United States

Tanvir Rahman Tarafder is a passionate and results-driven cloud computing professional with a strong foundation in software development and IT solutions. With expertise in AWS services, including EC2, S3, Lambda, and RDS, he thrives in building scalable and efficient cloud-based architectures. His journey from a Computer Science graduate to a cloud enthusiast reflects his commitment to innovation and problem-solving. Beyond his technical expertise, Tanvir is a team player and excellent communicator, always eager to explore new technological advancements and contribute to impactful projects.

Publication Profile

Google Scholar

Academic Background 🎓

Tanvir is currently pursuing a Master’s in Information Technology (Cloud Computing) at Westcliff University, USA, maintaining an impressive CGPA of 3.96 (expected 2025). He earned his Bachelor of Science in Computer Science & Engineering from American International University-Bangladesh (AIUB) with a CGPA of 3.23 (2018-2021). His strong academic performance is complemented by a solid foundation in programming, databases, and cloud infrastructure. His early education includes a Higher Secondary Certificate from Dhaka City College and a Secondary School Certificate from Bogura Cantonment Public School & College, where he excelled with top grades.

Professional Experience 💼

Tanvir has gained diverse industry experience in various technical and consultancy roles. As an IT Officer at SM Fintech Technologies Ltd., he managed website maintenance, configured email servers, reviewed vendor contracts, and coordinated IT purchases to optimize business operations. His passion for academia led him to work as a Teaching Assistant at AIUB, where he supported students in Computer Graphics courses. Additionally, his role as an International Student Consultant at Revolution Student Consultancy allowed him to guide over 50 students in securing admissions to American universities. His expertise spans cloud computing, software development, and IT consultancy, making him a versatile professional.

Awards and Honors 🏆

Tanvir has demonstrated his technical excellence through multiple industry-recognized certifications. He holds the AWS Certified Solutions Architect Associate (Valid till 2030) and AWS Certified Cloud Practitioner (Valid till 2029), showcasing his deep expertise in cloud computing. Additionally, he has earned certifications in Python programming and front-end web development from prestigious platforms. These achievements highlight his continuous learning mindset and dedication to staying ahead in the tech industry.

Research Focus 🔬

Tanvir’s research focuses on leveraging Artificial Intelligence (AI) and Machine Learning (ML) in cloud computing, predictive analytics, and smart systems. His work includes forecasting Electric Vehicle adoption, AI-driven smart grid optimization, and transformative AI applications in healthcare. His passion for exploring AI’s role in solving real-world problems reflects his commitment to advancing technology for societal benefits. He has contributed to multiple peer-reviewed publications, addressing challenges in water quality analysis, synthetic e-commerce data insights, and medical imaging advancements.

Conclusion 🌟

With a strong technical foundation, hands-on cloud computing experience, and a keen research interest in AI-driven solutions, Tanvir Rahman Tarafder stands out as a forward-thinking innovator in the field of cloud technology and AI. His ability to bridge academic knowledge with practical applications makes him a valuable asset in any technology-driven organization. His continuous pursuit of excellence and eagerness to contribute to groundbreaking research and development mark him as a promising professional in the ever-evolving tech landscape.

Top Publications 📚

Forecasting Electric Vehicle Adoption in the USA Using Machine Learning Models
Published in: Journal of Computer Science and Technology Studies (2024)
Cited by: 12 articles

Discoverable Hidden Patterns in Water Quality through AI, LLMs, and Transparent Remote SensingPublished in: 2024 17th International Conference on Security of Information and Networks (2024)
Cited by: 9 articles

Integrating Transformative AI for Next-Level Predictive Analytics in Healthcare
Published in: IEEE Conference on Engineering Informatics (ICEI) (2024)
Cited by: 9 articles

Optimizing Load Forecasting in Smart Grids with AI-Driven Solutions
Published in: IEEE International Conference on Data and Software Engineering (ICoDSE) (2024)
Cited by: 7 articles

A Novel Diagnostic Framework with an Optimized Ensemble of Vision Transformers and Convolutional Neural Networks for Enhanced Alzheimer’s Disease Detection in Medical Imaging
Published in: Diagnostics Journal (2025)
Cited by: (Pending)

Leveraging Machine Learning for Insights and Predictions in Synthetic E-commerce Data in the USA: A Comprehensive Analysis
Published in: (Journal details pending)
Cited by: (Pending)

Obsa Gilo Wakuma | Computer Science | Best Researcher Award

Dr. Obsa Gilo Wakuma | Computer Science | Best Researcher Award

Ass. Prof, Wallaga University, Ethiopia

Dr. Obsa Gilo Wakuma is a dedicated computer scientist specializing in deep learning and domain adaptation. With extensive experience in academia, he has contributed significantly to the field through his research and teaching. Dr. Obsa has held various positions at Wallaga University, Ethiopia, and currently serves as a research scholar at the Indian Institute of Technology Patna, India. His expertise spans multiple programming languages and database management systems, making him a versatile and valuable contributor to the field of computer science.

Profile

Strengths for the Award:

  1. Extensive Research Background: Dr. Obsa Gilo has a robust academic background, culminating in a Ph.D. in Computer Science and Engineering with a focus on deep learning approaches for efficient domain adaptation. His research in domain adaptation, particularly in sensor data and image classification, showcases his innovative contributions to the field.
  2. Publications: Dr. Gilo has a significant number of publications in reputed journals and conference proceedings. Notable among them are:
    • “Kernel bures metric for domain adaptation in sensor data” in Expert System with Applications (2024)
    • “Subdomain adaptation via correlation alignment with entropy minimization for unsupervised domain adaptation” in Pattern Analysis and Applications (2024)
    • “Rdaot: Robust unsupervised deep sub-domain adaptation through optimal transport for image classification” in IEEE Access (2023)
  3. Teaching and Mentoring: His employment history includes roles such as Lecturer and Graduate Assistant at Wallaga University, demonstrating his commitment to education and mentoring the next generation of scholars.
  4. Skills and Competencies: Dr. Gilo possesses strong technical skills in various programming languages, databases, and web development technologies, along with proficiency in English, Afaan Oromoo, and Amharic. This multilingual ability enhances his capacity to engage with diverse communities.
  5. Community Service: His experience includes academic research, teaching, training, consultation, and community service, reflecting a well-rounded professional dedicated to both academic and societal contributions.

Areas for Improvement:

  1. Practical Community Impact: While Dr. Gilo has an impressive academic and research portfolio, there could be more emphasis on the practical application of his research directly benefiting local communities. Highlighting specific projects or initiatives where his work has directly impacted community development would strengthen his case.
  2. Collaboration with Local Institutions: Greater collaboration with local institutions and involvement in projects addressing community-specific issues could further enhance his profile. Establishing partnerships with local universities, NGOs, or governmental bodies to implement his research findings in real-world settings would be beneficial.
  3. Visibility and Outreach: Increasing the visibility of his work through public lectures, community workshops, or outreach programs can help in demonstrating the broader societal impact of his research. Engaging with the community through these platforms can showcase the practical benefits of his research.

 

Education: 🎓

Dr. Obsa Gilo Wakuma holds a Ph.D. in Computer Science and Engineering from the Indian Institute of Technology Patna, with a thesis on “Deep Learning Approaches for Efficient Domain Adaptation.” He earned his M.Sc. in Computer Science from Wallaga University, where he developed an Information Extraction Model for Afaan Oromo news texts. Dr. Obsa also holds a B.Sc. in Computer Science from Wallaga University and has a strong foundation from Sibu Sire Preparatory and High School.

Experience: 💼

Dr. Obsa’s professional journey includes roles such as Recorder and Laboratory Technician at Wallaga University. He progressed to become a Graduate Assistant, Lecturer, and finally a Research Scholar at IIT Patna. His career reflects a blend of administrative, technical, and academic responsibilities, showcasing his diverse skill set and commitment to the field.

Research Interests: 🔍

Dr. Obsa’s research interests lie in deep learning, domain adaptation, and unsupervised learning. He has focused on developing efficient methods for domain adaptation in sensor data and image classification, contributing to several high-impact publications. His work aims to enhance the applicability and robustness of machine learning models in diverse environments.

Awards: 🏆

Dr. Obsa has been recognized for his academic excellence and research contributions throughout his career. He has received accolades for his innovative work in domain adaptation and deep learning, highlighting his role as a prominent researcher in the field of computer science.

Publications

  1. Unsupervised Sub-Domain Adaptation Using Optimal Transport. Journal of Visual Communication and Image Representation, 94, 103857. Cited by: 1 article.
  2. Kernel Bures Metric for Domain Adaptation in Sensor Data. Expert System with Applications, 255(Part C), 124725. Cited by: 1 article.
  3. Subdomain Adaptation via Correlation Alignment with Entropy Minimization for Unsupervised Domain Adaptation. Pattern Analysis and Applications, 27(1), 13. Cited by: 1 article.
  4. RDAOT: Robust Unsupervised Deep Sub-Domain Adaptation through Optimal Transport for Image Classification. IEEE Access. Cited by: 1 article.
  5. Integration of Discriminate Features and Similarity Preserving for Unsupervised Domain Adaptation. In 2022 IEEE 19th India Council International Conference (INDICON), pp. 1–6. Cited by: 1 article.