Nora Baaalla | Material Sciences | Best Researcher Award

Dr. Nora Baaalla | Material Sciences | Best Researcher Award

Assistant professor | Foundation for Research, Development and Innovation in Science and Engineering | Morocco

Dr. Nora Baaalla is a Moroccan physicist whose work bridges materials theory and energy applications. She focuses on hybrid compounds, transition-metal oxides, and halide perovskites, translating first-principles insights into pathways for better optoelectronic and photovoltaic devices. Her career blends teaching, mentoring, and collaborative research across Moroccan and international laboratories. She contributes to curriculum design, supervises capstone projects, and participates in scientific events that connect academic advances with industry needs. With a background spanning modeling, thin-film studies, and device-relevant properties, she champions rigorous computation aligned with measurable outcomes, emphasizing reproducibility, open scientific discussion, and practical recommendations for sustainable technology adoption.

Publication Profile

Scopus

ORCID

Google Scholar

Education Background

Her academic formation progresses from foundational physical sciences to advanced specialization in renewable energy, storage, and materials modeling. Along the way, she explored solar geometry, thermal systems, and the design of collective solar solutions, integrating geographic and temporal datasets into user-friendly decision tools. Later, she deepened expertise in density-functional methods, band alignment at heterointerfaces, and structure–property relationships in complex solids and hybrids. This pathway unified laboratory techniques, computational packages, and data analysis workflows into a coherent approach for evaluating materials under realistic operating conditions, preparing her to address challenges in efficiency, reliability, and scalability for solar and optoelectronic technologies.

Professional Experience

She teaches core physics to preparatory and undergraduate cohorts, covering electromagnetism, electrostatics, electronics, thermodynamics, optics, materials, and fabrication processes across lectures, tutorials, and laboratories. Beyond classroom duties, she designs syllabi, coordinates academic cycles, and guides students through hands-on projects such as solar tracking and voice-controlled home systems. Her university service includes reviewing manuscripts, organizing scientific meetings on green hydrogen, and participating in training related to high-performance computing, pedagogy, research methodology, entrepreneurship, and scientific publishing. She also brings practical energy-engineering experience from industry placements, translating standards, feasibility analyses, and performance metrics into actionable classroom and research practices.

Awards and Honors

Her recognition stems from sustained scholarly engagement and service to the physics and energy communities. She has been invited to evaluate submissions for an international optics and quantum electronics journal and to help organize a global event focused on hydrogen. Her development record includes competitive workshops and certifications in high-performance computing, scientific writing, university pedagogy, intellectual property, and management, reflecting commitment to continuous improvement. Participation in regional and international conferences demonstrates her visibility and leadership. These activities, alongside mentorship and curriculum contributions, underscore dedication to scientific quality, collaborative impact, and the advancement of sustainable energy research and education.

Research Focus

Her current agenda leverages first-principles calculations to optimize device-relevant properties in semiconductors and hybrids. She studies band alignment at heterojunctions, dielectric response, optical absorption, and transport descriptors tied to thermoelectric and photovoltaic performance. Model systems include double perovskites, polyoxometalate-based frameworks, and mixed chalcogenide oxides. By coupling theory with experimentally accessible metrics, she proposes materials screening criteria, interface engineering strategies, and defect-tolerant design rules. The broader aim is to translate atomistic understanding into guidance for film growth, processing windows, and stack architectures that raise efficiency, stabilize operation, and reduce environmental impact across solar energy and optoelectronic applications.

Publications — Top Notes

  1. Study of optical, electrical and photovoltaic properties of CH₃NH₃PbI₃ perovskite: ab initio calculations 
    Published Year: 2020
    Citation: 36

  2. Structure, optical and magnetic properties of a novel homometallic coordination polymers: Experimental and Computational studies 
    Published Year: 2020
    Citation: 28

  3. Electronic and optical properties of organic–inorganic (CuII/ReVII)-heterobimetallic L-Arginine complex: Experimental and Computational studies
    Published Year: 2021
    Citation: 16

  4. Synthesis of CuO thin films based on Taguchi design for solar absorber
    Published Year: 2021
    Citation: 45

  5. Insights into Ag₂Mo₃SeO₁₂ for photovoltaic and optoelectronic applications: A theoretical exploration of its structural, electronic, and thermoelectric behavior 
    Published Year: 2024
    Citation: 6

Conclusion

Dr. Nora Baaalla unites rigorous computation, practical energy engineering, and student-centered pedagogy. Her teaching spans foundational physics through specialized materials topics, while her research connects electronic structure to measurable device outcomes. Engagement with peer review, conference organization, and professional training reflects a service-oriented approach that strengthens community standards and collaboration. By focusing on interface physics, optical response, and transport, she contributes guidance for scaling sustainable technologies. Her trajectory demonstrates careful integration of methods, clarity in problem selection, and commitment to mentorship, positioning her to advance materials-enabled solutions for renewable energy, efficient electronics, and modern scientific education.

Mr. Dong Han | Materials Science | Best Researcher Award

Mr. Dong Han | Materials Science | Best Researcher Award

Doctor, University of Tennessee, United States

Dong Han is an accomplished researcher and engineer specializing in multiscale modeling of material and structural behaviors. With over seven years of hands-on experience, he has contributed significantly to solid mechanics, structural mechanics, and computational modeling. His expertise spans plasticity, fracture, fatigue, vibration, and heat transfer, making him a key player in advanced material research. Proficient in various CAE and CAD tools, he excels in developing computational solutions for real-world engineering challenges.

Publication Profile

Scopus

🎓 Education:

Dong Han holds a Ph.D. in Materials Science and Engineering from the University of Tennessee, Knoxville (2020–2024) and previously studied at the University of California, Irvine (2019–2020). He earned an M.S. in Solid Mechanics from the University of Chinese Academy of Sciences (2016–2019) and a B.S. in Theoretical and Applied Mechanics from the University of Science and Technology of China (2012–2016). His academic journey reflects a strong foundation in mechanics and advanced computational modeling.

💼 Experience:

Dong Han has diverse experience in academia, research institutions, and industry. As a Mechanical Engineer at Caterpillar Inc. (2023–2024), he played a crucial role in new product introduction and development, earning multiple recognitions for his contributions. He has been a Graduate Research Assistant at Oak Ridge National Laboratory and the University of Tennessee, Knoxville, where he developed thermomechanical models for additive manufacturing, studied high-temperature hydrogen attack, and conducted micromechanical investigations of stress relaxation cracking. His earlier research at the Chinese Academy of Sciences involved dynamic compression of metallic glass matrix composites and computational modeling of glass transition behavior.

🏆 Awards and Honors:

Dong Han has received multiple recognitions at Caterpillar Inc. for his innovative solutions in product development. His research contributions in multiscale modeling and material behavior have been acknowledged through publications in high-impact journals. His work in material mechanics and computational modeling has made significant advancements in industrial and academic settings.

🔍 Research Focus:

Dong Han’s research spans finite element analysis (FEA), molecular dynamics, computational fluid dynamics (CFD), and experimental material testing. His work on additive manufacturing, high-temperature hydrogen attack, and stress relaxation cracking has enhanced the understanding of material behavior under extreme conditions. He integrates computational and experimental approaches to optimize material selection and structural design, contributing to safer and more efficient engineering solutions.

🔗 Conclusion:

Dong Han is a distinguished researcher and engineer with expertise in material modeling, computational mechanics, and experimental validation. His contributions to high-temperature material behavior, additive manufacturing, and structural optimization have had a significant impact on both academia and industry. With a deep understanding of computational and experimental techniques, he continues to drive innovation in engineering materials and structural analysis. 🚀

📚 Publications:

A mechanistic interpretation of Nelson curves for PVP failures under high-temperature hydrogen attack. Mechanics of Materials.

Atomistic structural mechanism for the glass transition: entropic contribution. Physical Review B.

Statistical complexity of potential energy landscape as a dynamic signature of the glass transition. Physical Review B.

Identifying multiple synergistic factors on the susceptibility to stress relaxation cracking in variously heat-treated weldments. Mechanics of Materials.

Residual stress modeling and advanced diffraction measurements of 347H steel weldments. Pressure Vessels and Piping Conference.

Does structure determine property in amorphous solids? Chinese Journal of Theoretical and Applied Mechanics.

Sulyman Olakunle Salawu | Nanotechnology | Outstanding Scientist Award

Dr. Sulyman Olakunle Salawu | Nanotechnology | Outstanding Scientist Award

Lecturer and researcher, Bowen University, Nigeria

Dr. Sulyman Olakunle Salawu is an esteemed Applied Mathematician from Nigeria, specializing in Computational Fluid Mechanics, Reactive Combustion Fluid, and Mathematical Modelling & Applications. He is a prominent researcher and academic, currently contributing to the Department of Mathematics at Bowen University, Iwo, Nigeria. Dr. Salawu is recognized for his extensive research and numerous publications in high-impact journals, earning him accolades and recognition from various prestigious institutions worldwide. 🌍📘

Profile

ORCID

Education

🎓 Ph.D. in Applied Mathematics, University of Ilorin, Ilorin, Nigeria (2017). Thesis: Heat and Mass Transfer of Inclined Magnetic Field Pressure-driven Flow past a Permeable Surface. Supervisor: Dr. Moses S. Dada. 🎓 M.Sc. in Applied Mathematics, University of Lagos, Akoka, Nigeria (2012). Dissertation: Analysis of Nonlinear Discharged Pollutant into a Channel Flow. Supervisor: Dr. Olugbenga J. Fenuga. B.Tech. in Pure & Applied Mathematics, Ladoke Akintola University of Technology, Ogbomoso, Nigeria (2008). Project: Nonlinear Thermodynamic Analysis of Reactive Fluid in a Channel. Supervisor: Dr. Olusegun O. Ajala

Experience

🧑‍🏫 Dr. Salawu has held significant academic and research positions, most notably at Bowen University, Iwo, Nigeria. His contributions to the field of Applied Mathematics are profound, encompassing computational and theoretical advancements. His research visits and collaborations, such as with the International Centre for Theoretical Physics in Italy, highlight his international recognition and collaborative efforts in advancing mathematical sciences. 🌐🔬

Research Interests

🔍 Dr. Salawu’s research interests are diverse and impactful, focusing on Computational Fluid Mechanics, Reactive Combustion Fluid, and Mathematical Modelling & Applications. His work aims to solve complex problems related to heat and mass transfer, fluid dynamics, and the application of artificial intelligence in biostatistical analysis. His projects often incorporate cutting-edge techniques and interdisciplinary approaches to address real-world challenges. 💡🌊

Awards 

🏆 Dr. Salawu has received numerous awards and recognitions, reflecting his outstanding contributions to the field of mathematics. Notable honors include the AD Scientific Index Ranking for Scientists 2024, Bowen University Highest Published Award for the 2022/2023 academic session, and the Elsevier Recognition Award for publishing multiple open-access articles. He is also listed among the Top 2 percent of world scientists by Stanford University, USA. 🌟🎖️

Publications

Thermal case exploration of electromagnetic radiative tri-hybrid nanofluid flow in Bi-directional stretching device in absorbent medium: SQLM analysis – Case Studies in Thermal Engineering, 60, 104734 (2024) [Cited by: 15] Case Studies in Thermal Engineering

Heat radiation absorption and irreversibility of electromagnetic Williamson hybridized Al2O3-CoFe2O4/H2O nanofluid: A concentrated power generation – Journal of the Indian Chemical Society, 101, 101225 (2024) [Cited by: 10] Journal of the Indian Chemical Society

Computational analysis of transient thermal diffusion and propagation of chemically reactive magneto-nanofluid, Brinkman-type flow past an oscillating absorbent plate – Partial Differential Equations in Applied Mathematics, 11, 100761 (2024) [Cited by: 8] Partial Differential Equations in Applied Mathematics

Heat transfer analysis of thermal radiative over a stretching curved surface using molybdenum disulfide and silicon dioxide composite material under the influence of solar radiation – Multidiscipline Modeling in Materials and Structures, 24, 240038 (2024) [Cited by: 7] Multidiscipline Modeling in Materials and Structures

Numerical study electroconductive non-Newtonian hybrid nanofluid flow from a stretching rotating disk with a Cattaneo-Christov heat flux model – Journal of Process Mechanical Engineering, 24, 258019 (2024) [Cited by: 5] Journal of Process Mechanical Engineering