Assist. Prof. Dr. Mustaqeem Khan | Artificial intelligence | Best Researcher Award

Assist. Prof. Dr. Mustaqeem Khan | Artificial intelligence | Best Researcher Award

Assist. Prof. Dr. Mustaqeem Khan | Assistant Professor | United Arab Emirates University | United Arab Emirates

Academic Background

Dr. Mustaqeem Khan is a distinguished researcher and academic in the field of Artificial Intelligence and Signal Processing. He earned his Doctorate in Software Convergence from Sejong University, South Korea, where his research focused on emotion recognition using deep learning. He also holds a Master’s degree in Computer Science from Islamia College Peshawar, Pakistan, where he was awarded a Gold Medal for academic excellence, and a Bachelor’s degree in Computer Science from the University of Agriculture, Peshawar. Dr. Khan’s scholarly impact is reflected in his remarkable research record, with Scopus indexing 47 documents and over 2,412 citations, resulting in an h-index of 20. On Google Scholar, his work has gained over 2,934 citations, maintaining an h-index of 21 and an i10-index of 31, positioning him among the top two percentage scientists globally.

Research Focus

His research primarily explores Speech and Audio Signal Processing, Emotion Recognition, and Deep Learning. Dr. Khan’s studies integrate multi-modal data analysis through advanced architectures, such as CNNs and Transformers, for applications in speech emotion recognition, computer vision, and energy analytics.

Work Experience

Dr. Khan serves as an Assistant Professor at the United Arab Emirates University, contributing to teaching, research supervision, and curriculum development. Previously, he worked as a Postdoctoral Fellow and Lab Coordinator at the Mohamed Bin Zayed University of Artificial Intelligence, where he collaborated with the Technical Innovation Institute on drone detection systems and managed multidisciplinary AI research teams. Before that, he gained substantial academic and research experience as a Research Assistant at Sejong University and as a Lecturer at Islamia College Peshawar, mentoring students in core computer science and artificial intelligence subjects.

Key Contributions

Dr. Khan has developed several advanced deep learning models, including hybrid attention transformers, multimodal cross-attention networks, and ensemble architectures for audio-visual recognition tasks. His work has contributed to advancements in emotion recognition, drone-based surveillance, and smart city analytics. He has also participated in major funded projects supported by the National Research Foundation of Korea and the Technology Innovation Institute, UAE.

Awards & Recognition

He has been honored with multiple distinctions, including Best Paper Awards, an Outstanding Research Award during his Ph.D., and recognition as a Gold Medalist for academic performance. His inclusion among the Top 2% Scientists (2023–2024) underscores his exceptional research influence and scholarly excellence.

Professional Roles & Memberships

Dr. Khan is an editorial board member and associate editor for several international journals, including the Annals of Applied Sciences and the European Journal of Mathematical Analysis. He serves as a reviewer for over 35 prestigious journals such as IEEE Access, Applied Soft Computing, and Knowledge-Based Systems, actively contributing to academic quality and peer review.

Profile

Scopus | Google Scholar | ORCID

Featured Publications

Khan, M., Ahmad, J., El Saddik, A., & Gueaieb, W. (2025). Joint Multi-Scale Multimodal Transformer for Emotion Using Consumer Devices. IEEE Transactions on Consumer Electronics.

Khan, M., Tran, P. N., Pham, N. T., & Othmani, A. (2025). MemoCMT: Multimodal Emotion Recognition Using Cross-Modal Transformer-Based Feature Fusion. Nature Scientific Reports.

Khan, M., Ahmad, J., El Saddik, A., & Gueaieb, W. (2024). Drone-HAT: Hybrid Attention Transformer for Complex Action Recognition in Drone Surveillance Videos. Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition.

Khan, M., Kwon, S. (2021). Optimal Feature Selection Based Speech Emotion Recognition Using Two-Stream Deep Convolutional Neural Network. International Journal of Intelligent Systems.

Khan, M., Kwon, S. (2021). Att-Net: Enhanced Emotion Recognition System Using Lightweight Self-Attention Module. Applied Soft Computing.

Impact Statement / Vision

Dr. Mustaqeem Khan envisions advancing AI systems capable of understanding human emotions and behaviors with precision and empathy. His goal is to integrate deep learning and multimodal intelligence into real-world applications that enhance human–machine interaction, healthcare, and smart technologies. His ongoing commitment to innovation continues to shape the future of intelligent computing and global research collaboration.

Dr. Keyong Hu | artificial intelligence | Best Researcher Award

Dr. Keyong Hu | artificial intelligence | Best Researcher Award

Teacher, Hangzhou Normal University, China

Dr. KeYong Hu is an accomplished academic and researcher specializing in artificial intelligence and new energy technology. He earned his Ph.D. from the Zhejiang University of Technology in 2016 and is currently serving as an Associate Professor at Hangzhou Normal University, within the School of Information Science and Technology. Dr. Hu has contributed significantly to the intersection of AI and energy systems, with numerous publications in international journals, showcasing his expertise in predictive modeling and intelligent optimization.

Publication Profile

ORCID

🎓 Education Background

Dr. KeYong Hu completed his doctoral studies at the Zhejiang University of Technology, Hangzhou, China, where he received his Ph.D. in 2016. His academic training laid a strong foundation in computational intelligence and energy-related engineering applications.

💼 Professional Experience

Dr. Hu holds the position of Associate Professor at Hangzhou Normal University, Hangzhou, Zhejiang, China, affiliated with the School of Information Science and Technology. He has been actively involved in teaching, mentoring, and high-impact research since earning his doctorate.

🏆 Awards and Honors

While specific awards are not listed, Dr. Hu’s prolific publishing record in top-tier peer-reviewed journals like Mathematics, Heliyon, Sustainability, and Computers and Electrical Engineering underscores his recognition and influence in the fields of AI and energy optimization.

🔬 Research Focus

Dr. Hu’s research centers on the integration of artificial intelligence with new energy technologies, particularly photovoltaic power forecasting, energy system optimization, and cross-modal data analysis. His innovative use of algorithms such as Copula functions, Transformers, and Dung Beetle Optimization showcases his depth in AI-driven energy analytics.

✅ Conclusion

Dr. KeYong Hu stands out as a forward-thinking researcher contributing impactful work at the intersection of artificial intelligence and sustainable energy. Through his academic leadership and research contributions, he continues to shape the future of intelligent energy systems in China and beyond. 🌍📈

📚 Top Publications 

🔗 Two-Stage Distributionally Robust Optimal Scheduling for Integrated Energy Systems Considering Uncertainties in Renewable Generation and Loads
Journal: Mathematics | Year: 2025
Cited by: Check on Google Scholar

🔗 Short-term Photovoltaic Forecasting Model with Parallel Multi-Channel Optimization Based on Improved Dung Beetle Algorithm
Journal: Heliyon | Year: 2024
Cited by: Check on Google Scholar

🔗 Distributed Regional Photovoltaic Power Prediction Based on Stack Integration Algorithm
Journal: Mathematics | Year: 2024
Cited by: Check on Google Scholar

🔗 Automatic Depression Prediction via Cross-Modal Attention-Based Multi-Modal Fusion in Social Networks
Journal: Computers and Electrical Engineering | Year: 2024
Cited by: Check on Google Scholar

🔗 Short-Term Photovoltaic Power Generation Prediction Based on Copula Function and CNN-CosAttention-Transformer
Journal: Sustainability | Year: 2024
Cited by: Check on Google Scholar

Dr. Saikat Gochhait | Artificial Intelligence | Best Researcher Award

Dr. Saikat Gochhait | Artificial Intelligence | Best Researcher Award

Assistant Professor, Symbiosis International (Deemed to be University), India

Dr. Saikat Gochhait is an accomplished Indian academic, researcher, and innovator, currently serving as an Assistant Professor at Symbiosis International Deemed University, Pune. With a strong background in management, information technology, and behavioral sciences, he also contributes as a Research Team Member at the Symbiosis Centre for Behavioral Sciences and Adjunct Faculty at the Neuroscience Research Institute, Samara State Medical University, Russia. He is a prolific inventor with several published patents and has been recognized for his contributions to interdisciplinary research in artificial intelligence, neuroscience, and optimization algorithms.

Publication Profile

🎓 Education Background

Dr. Gochhait earned his Doctor of Philosophy (Ph.D.) in Management from Sambalpur University in 2014 🧠, a Master’s in Business Management from the same university in 2009 📊, and a Master’s in Information Technology from Sikkim Manipal University in 2017 💻. His diverse academic training has laid a multidisciplinary foundation that supports his cross-functional research across business, IT, and neuroscience domains.

💼 Professional Experience

With over two decades of experience spanning academia and industry, Dr. Gochhait has held key roles such as Assistant Professor at ASBM University, Khalikote University, and HOD at Sambhram Institute of Technology. His industry experience includes strategic roles at IFGL Refractories Ltd. and Tata Krosaki Refractories Ltd. Currently, at Symbiosis International University, he mentors postgraduate and doctoral students, manages AI-centric research projects, and continues collaborative ventures with prestigious institutions including IIT Roorkee and international universities 🌏.

🏆 Awards and Honors

Dr. Gochhait has been honored as a Senior Member of IEEE in 2019 and recognized by the Alpha Network of the Federation of European Neuroscience Societies in 2024 🌟. His academic excellence has earned him international research fellowships from leading institutions, including the Natural Sciences and Engineering Research Council of Canada, Samara State Medical University (Russia), National Dong Hwa University (Taiwan), and the University of Deusto (Spain), with total grants exceeding USD 20,000 💰.

🔬 Research Focus

Dr. Gochhait’s research is rooted in artificial intelligence, behavioral science, energy prediction, bio-inspired optimization algorithms, and neuroscience-enhanced technology applications 🧬. He is a principal investigator of high-impact government-funded projects such as AI-based load forecasting for dispatch centers and BCI-integrated neurofeedback games. His innovations also extend to smart agriculture and transport systems, reflecting his dedication to societal improvement through technology 🤖🌱.

✅ Conclusion

Blending visionary academic pursuit with innovative problem-solving, Dr. Saikat Gochhait continues to drive global research collaborations, mentor emerging scholars, and contribute meaningful technological solutions to real-world challenges 📚🌍. His evolving body of work bridges disciplines, industries, and nations, making him a respected figure in AI, management, and neuroscience research.

📚 Top Publications

Pufferfish Optimization Algorithm: A New Bio-Inspired Metaheuristic Algorithm for Solving Optimization Problems
Biomimetics, 2024Indexed in Scopus/WoS
Cited by: 12 articles

Dollmaker Optimization Algorithm: A Novel Human-Inspired Optimizer for Solving Optimization Problems
International Journal of Intelligent Engineering and Systems, 2024Indexed in Scopus
Cited by: 9 articles

Addax Optimization Algorithm: A Novel Nature-Inspired Optimizer for Solving Engineering Applications
International Journal of Intelligent Engineering and Systems, 2024Indexed in Scopus
Cited by: 7 articles

Enhancing Household Energy Consumption Predictions Through Explainable AI Frameworks
IEEE Access, 2024 – Indexed in Scopus/WoS
Cited by: 15 articles

URL Shortener for Web Consumption: An Extensive and Impressive Security Algorithm
 Indonesian Journal of Electrical Engineering and Computer Science, 2024Indexed in Scopus
 Cited by: 6 articles