Assist. Prof. Dr. Mohanned M. H. AL-Khafaji | Artificial Intelligence | Best Researcher Award

Assist. Prof. Dr. Mohanned M. H. AL-Khafaji | Artificial Intelligence | Best Researcher Award

Engineering | University of Technology | Iraq

Dr. Mohanned Mohammed Hussein Al-Khafaji is an accomplished researcher and academic leader in production engineering, specializing in intelligent manufacturing systems, laser material processing, neural network modeling, and fuzzy logic control applications. As Dean of the College of Production Engineering and Metallurgy at the University of Technology, Baghdad, his research integrates computational modeling, automation, and artificial intelligence to enhance production efficiency and precision engineering. He has made significant contributions to the development of computer-controlled manufacturing systems, laser-based material processing, and predictive modeling using advanced algorithms. His work on CO₂ laser processing, neural network-based machining analysis, and hybrid intelligent systems has advanced industrial automation and smart manufacturing processes. Dr. Al-Khafaji’s research also explores mechatronics, robotic systems, and additive manufacturing, emphasizing simulation tools like Abaqus, COMSOL Multiphysics, and MATLAB. His scientific output reflects substantial academic influence, with 15 Scopus-indexed documents, 41 citations from 37 documents, and an h-index of 3. On Google Scholar, he has accumulated 125 citations, an h-index of 6, and an i10-index of 4, underscoring his growing impact in engineering research.

Profile

Scopus | ORCID | Google Scholar

Featured Publications

Al-Khafaji, M. M. H., & Hubeatir, K. A. (2021). CO2 laser micro-engraving of PMMA complemented by Taguchi and ANOVA methods. Journal of Physics: Conference Series, 1795(1), 012062.

Al-Khafaji, M. M. H. (2018). Neural network modeling of cutting force and chip thickness ratio for turning aluminum alloy 7075-T6. Al-Khwarizmi Engineering Journal, 14(1), 67–76.

Khayoon, M. A., Hubeatir, K. A., & Al-Khafaji, M. M. (2021). Laser transmission welding is a promising joining technology technique – A recent review. Journal of Physics: Conference Series, 1973(1), 012023.

Momena, T. F. A., Mohammed, M. M. H., & Al-Khafaji, M. M. H. (2023). Smart robot vision for a pick and place robotic system. Engineering and Technology Journal, 40(6), 1–15.

Shaker, F., Al-Khafaji, M., & Hubeatir, K. (2020). Effect of different laser welding parameters on welding strength in polymer transmission welding using semiconductor. Engineering and Technology Journal, 38(5), 761–768.*

Seyed Abolfazl Aghili | Deep Learning | Best Review Paper Award

Dr. Seyed Abolfazl Aghili | Deep Learning | Best Review Paper Award

lecturer, iran university of science and technology, Iran

Seyed Abolfazl Aghili is a passionate civil engineer with a strong focus on construction engineering and management. With a Ph.D. in Civil Engineering from the prestigious Iran University of Science and Technology (IUST), he specializes in using artificial intelligence for enhancing the resilience of HVAC systems in hospitals. His research integrates cutting-edge technologies such as machine learning and deep learning to optimize building systems and improve decision-making in construction projects. Seyed’s dedication to his field has earned him a reputation as a driven academic and professional in the civil engineering community. 🏗️🤖

Publication Profile

ORCID

Education Background

Seyed Abolfazl Aghili completed his Ph.D. in Civil Engineering with a specialization in Construction Engineering and Management from Iran University of Science and Technology (IUST) between 2019 and 2024. His doctoral thesis focused on developing a framework to assess the long-term resilience of hospital air conditioning systems using artificial intelligence. Prior to that, he earned his M.Sc. in Civil Engineering with a focus on Construction Engineering and Management at IUST, where he investigated employee selection methods in construction firms. He also holds a B.Sc. in Civil Engineering from Isfahan University of Technology (IUT). 🎓📚

Professional Experience

Seyed Abolfazl Aghili has extensive experience in both academic research and practical applications of civil engineering, particularly in construction management. He has worked on various projects involving energy management, risk management, and resilience within the construction industry. His academic journey has seen him contribute significantly to the research community, particularly in the areas of AI in construction systems and HVAC performance. Furthermore, he has been an integral part of various conferences and publications, sharing his insights on improving construction management processes through technology. 💼🏢

Awards and Honors

Seyed Abolfazl Aghili has earned several prestigious awards throughout his academic journey. He was ranked 5th among 2200 participants in the Nationwide University Entrance Exam for the Ph.D. program in Iran in 2019. Additionally, he ranked 2nd among all construction management students at Iran University of Science and Technology during his M.Sc. studies. He was also ranked in the top 1% (220th out of 32,663) in the Nationwide University Entrance Exam for the M.Sc. program in Iran in 2013. 🏆🥇

Research Focus

Seyed’s primary research interests lie in the application of machine learning and deep learning techniques in construction engineering. His work focuses on enhancing the resilience of building systems, especially HVAC systems in healthcare settings. He also explores risk management, sustainability, lean construction, and decision-making systems for project managers. His interdisciplinary research combines civil engineering with advanced AI methodologies, driving innovations in construction management and systems optimization. 🔍💡

Conclusion

Seyed Abolfazl Aghili’s academic and professional journey reflects his commitment to advancing civil engineering through innovative solutions. His focus on integrating artificial intelligence into construction systems is helping to create smarter, more sustainable, and resilient built environments. Through his work, he continues to contribute valuable insights to both the academic world and the practical sector of construction engineering. 🌍🔧

Publications Top Notes

Artificial Intelligence Approaches to Energy Management in HVAC Systems: A Systematic Review. Journal of Buildings, 15.7 (2025).

Data-driven approach to fault detection for hospital HVAC system. Journals of Smart and Sustainable Built Environment, ahead-of-print (2024).

Feasibility Study of Using BIM in Construction Site Decision Making in Iran. International Conference on Civil Engineering, Architecture and Urban Infrastructure, July 2015.

Review of digital imaging technology in safety management in the construction industry. 1st National Conference on Development of Civil Engineering, Architecture, Electricity and Mechanical in Iran (December, 2014).

The role of insurance companies in managing the crisis after earthquake. 1st National Congress of Engineering, Construction, and Evaluation of Development Projects, May 2013.

The need for a new approach to pre-crisis and post-crisis management of earthquake. 1st National Conference on Seismology and Earthquake, February 2013.