slimane arbaoui | Artificial Intelligence | Young Scientist Award

Mr. slimane arbaoui | Artificial intellegence | Young Scientist Award

Cube-SDC team, INSA Strasbourg, University of Strasbourg , 24 Bd de la Victoire, Strasbourg, 67000, France, insa strasbourg, France

Slimane Arbaoui is a dedicated final-year Computer Science student at École Supérieure en Informatique (ESI) in Sidi Bel Abbess, Algeria, specializing in Android application development and machine learning. 🎓 His skills span Java-based Android development, data integration, and advanced problem-solving in software, alongside a versatile understanding of multiple programming languages, including Python and Kotlin. Slimane has applied his AI knowledge to impactful projects, even authoring a research paper. 📚 Known for his innovation and strong analytical skills, Slimane is passionate about tackling real-world challenges with technology.

Publication Profile

Scopus

Education

Slimane completed his State Engineering and Master’s degrees in Computer Science at ESI SBA in 2023. 🎓 His academic journey has strengthened his technical expertise and provided a foundation in both theoretical and applied computing, with a focus on machine learning, mobile app development, and web technologies.

Experience

During his internship at INSA-Strasbourg, France 🇫🇷, Slimane applied machine learning to improve battery health prediction, developing models that track and identify factors contributing to battery degradation. At CNAS in Algeria, he gained practical insights into network database applications and web app development. 💻 As a freelancer on Upwork, Slimane developed Android applications and managed web back-end services, demonstrating his versatility in real-world projects.

Research Focus

Slimane’s research interests center on artificial intelligence and machine learning, with a special focus on NLP applications, sentiment analysis, and health data prediction. 🧠 His projects include sentiment analysis and fake news detection in Arabic language datasets, alongside health management applications that leverage data-driven insights to enhance service quality. His work in battery health prediction highlights his proficiency in machine learning model development and evaluation.

Awards and Honours

Slimane holds several certifications, including Microsoft Certified: Azure Fundamentals and the Android Basics Nanodegree. 🏅 His achievements in AI include completing courses on deep learning and machine learning through Kaggle and Coursera, which demonstrate his commitment to continuous learning and professional development.

Publication Top Notes

Dual-model approach for one-shot lithium-ion battery state of health sequence prediction

SOCXAI: Leveraging CNN and SHAP Analysis for Battery SOC Estimation and Anomaly Detection

Data-driven strategy for state of health prediction and anomaly detection in lithium-ion batteries

 

 

Gabriella d’Albenzio | Artificial Intelligence | Best Researcher Award

Dr. Gabriella d’Albenzio | Artificial Intelligence | Best Researcher Award

Postdoc, Perk Lab Perk Lab Laboratory for Percutaneous Surgery, Canada

🎓 Gabriella d’Albenzio is a talented researcher with a focus on biomedical engineering and medical imaging. Currently pursuing a Ph.D. in Informatics at the University of Oslo, she has an impressive background in clinical engineering and biomedical engineering. Gabriella has worked on cutting-edge projects related to image-guided therapies and deep learning for medical applications, contributing significantly to her field through both research and development.

Profile

Scopus

 

Education

📚 Gabriella d’Albenzio holds a Ph.D. in Informatics from the University of Oslo (2021-2024). She completed her M.Sc. in Biomedical Engineering and B.Sc. in Clinical Engineering at Sapienza University of Rome, Italy, reflecting a solid foundation in both engineering and medical sciences.

Experience

💼 Gabriella d’Albenzio has extensive experience as a Scientific Software Developer at The Intervention Centre in Oslo, Norway, and as a Research Assistant at NTNU. She has also interned at the Rehabilitation Bioengineering Lab in Rome, contributing to various research projects involving advanced medical imaging and deep learning technologies.

Research Interests

🧠 Gabriella’s research interests are centered around enhancing surgical planning and medical imaging through deep learning and advanced computational techniques. Her work focuses on developing algorithms for medical image segmentation and predictive models for surgical outcomes, aiming to improve patient-specific treatment strategies.

Awards

🏅 Gabriella d’Albenzio has been recognized with the Globalink Research Internship by Mitacs, Canada, and a Grant Research Stay Abroad by The Research Council of Norway. These awards highlight her outstanding contributions to research and her commitment to advancing biomedical engineering.

Publications

Optimizing Surgical Plans for Parenchyma-Sparing Liver Resections through Contour-Guided Resection and Surface Approximation

Using NURBS for Virtual Resections in Liver Surgery Planning: A Comparative Usability Study

Patient-Specific Functional Liver Segments Based on Centerline Classification of the Hepatic and Portal Veins

ALive: Analytics for Computation and Visualization of Liver Resections

Laparoscopic Parenchyma-Sparing Liver Resection for Large (≥50 mm) Colorectal Metastases

JAINUL FATHIMA | Artificial Intelligence | Best Researcher Award

Dr. JAINUL FATHIMA | Artificial Intelligence | Best Researcher Award

Associate Professor, Francis Xavier Engineering College, India

📘 Dr. A. Jainul Fathima, B.Tech., M.E., Ph.D., is an innovative professor with a strong passion for fostering academic development and success for every student. With 12 years of combined experience in teaching, research, and industry, she excels in implementing technology-based curriculum delivery and assessment tools.

Profile

Scopus

Education🎓

Dr. Fathima holds a Ph.D. in Computational Drug Discovery from Kalasalingam Academy of Research and Education, where her interdisciplinary research focused on developing anti-viral drugs for dengue targets using AI techniques. She earned her M.E. in Computer Science and Engineering from Anna University with an 83% aggregate and a B.Tech. in Information Technology from Anna University with a 75% aggregate.

Experience 🛠️

👩‍🏫 With 12 years of total experience, Dr. Fathima has 6 years of teaching experience, currently serving as an Assistant Professor at Francis Xavier Engineering College. She has previously worked at K.L.N. College of Information Technology, Sethu Institute of Technology, and Kalasalingam University. Her research experience includes 3 years as a UGC Research Fellow and 2 years of teaching and instructing in Qatar. She also has 1 year of industrial experience as a Research Assistant in Computer-Aided Drug Design.

Research Interests 🔍

🔬 Dr. Fathima’s research interests are in the areas of computational drug discovery, machine learning, artificial intelligence, and bioinformatics. Her work focuses on applying advanced computational techniques to predict protein interactions and develop therapeutic solutions for diseases like dengue and Alzheimer’s.

Awards 🏆

🏆 Dr. Fathima has received several accolades, including the “Research Associate Award” from the Anti-viral Research Society in 2022, “Best Paper Award” at INCODS ’17 and NCAC ’09, and the “Outstanding Student Award” from Mepco Schlenk Engineering College.

Publications 📚

A comprehensive review on heart disease prognostication using different artificial intelligence algorithms, Computer Methods in Biomechanics and Biomedical Engineering, February 2024. Cited by 1.5

Alzheimer’s Patients Detection using Support Vector Machine (SVM) with Quantitative Analysis, Neuroscience Informatics, 2021. Cited by 0.5

IoT-Based Intelligent System for Garbage Level Monitoring in Smart Cities, International Conference on IoT, Communication and Automation Technology, 2023. Scopus Indexed

Intelligent Deep Learning Framework for Breast Cancer Prediction using Feature Ensemble Learning, IEEE Global Conference for Advancement in Technology, 2023. Scopus Indexed

Compressing Biosignal for diagnosing chronic diseases, Journal of Physics: Conference Series, 2021. Scopus Indexed