Mr. Abir Das | Artificial Intelligence | Research Excellence Award

Mr. Abir Das | Artificial Intelligence | Research Excellence Award

Siliguri Government Polytechnic College | India

Abir Das is an emerging AI/ML researcher whose work spans deep learning, computer vision, medical imaging, and explainable AI. With a strong foundation in developing end-to-end AI systems, his research focuses on Vision Transformers, self-supervised learning, noisy-label correction, and interpretable models for high-stakes applications such as healthcare, EEG signal analysis, and industrial fault diagnosis. He has contributed as the first author to multiple international journals, working extensively on hybrid deep learning models, CLIP-based zero-shot learning, EEG motor imagery classification, and sensor-driven diagnostic pipelines. His research integrates expertise in PyTorch, TensorFlow, and modern transformer architectures, emphasizing human-centered, reliable, and transparent AI solutions. He has actively explored the intersection of computer vision and embedded systems, enhancing drone autonomy, depth estimation, and real-time object detection, while also contributing to speech technologies through accent-conversion and multimodal learning. His scientific output includes publications in reputable venues such as Scientific Reports, MDPI Sensors, and Computers, Materials & Continua. His growing scholarly impact is reflected in Scopus metrics: 11 citations from 11 documents with an h-index of 1, and Google Scholar metrics: 12 citations, h-index 1, i10-index 1. His work continues to advance practical and theoretically grounded AI methodologies, blending deep learning innovations with real-world applications across biomedical imaging, EEG analysis, and industrial AI systems.

Publication Profile

Scopus | Google Scholar

Featured Publications

Das, A., Singh, S., Kim, J., Ahanger, T. A., & Pisa, A. A. (2025). Enhanced EEG signal classification in brain computer interfaces using hybrid deep learning models. Scientific Reports, 15(1), 27161.

Zereen, A. N., Das, A., & Uddin, J. (2024). Machine fault diagnosis using audio sensor data and explainable AI techniques: LIME and SHAP. Computers, Materials & Continua, 80(3).

Das, S. S. A. (2025). Few-shot and zero-shot learning for MRI brain tumor classification using CLIP and Vision Transformers. Sensors, 25(23), 7341.

Assist. Prof. Dr. Mehtab Alam | Artificial Intelligence | Best Researcher Award

Assist. Prof. Dr. Mehtab Alam | Artificial Intelligence | Best Researcher Award

Assist. Prof. Dr. Mehtab Alam |Assistant Professor | Delhi University | India

Dr. Mehtab Alam is an accomplished IT professional and academic specializing in Artificial Intelligence (AI), Internet of Things (IoT), Cyber Forensics, and Information Security. His research primarily focuses on developing AI-based smart IoT frameworks for intelligent healthcare systems, with a strong emphasis on predictive modeling, machine learning integration, and cloud-based data analytics. His scholarly contributions demonstrate a multidisciplinary approach combining computer science, data-driven healthcare innovation, and digital transformation. He has explored diverse research areas including smart city technologies, blockchain applications in e-governance, cybersecurity frameworks, and the application of swarm intelligence in network optimization. Dr. Alam has published extensively in reputed international journals and conferences, contributing to advancements in AI-driven sustainable systems and smart healthcare solutions. His works reflect technical depth and practical applicability, addressing modern challenges in digital infrastructure, public health informatics, and secure communication systems. He has authored 15 Scopus-indexed publications, with 30 Scopus citations and an h-index of 4. On Google Scholar, his research has received 256 citations with an h-index of 10 and an i10-index of 11, showcasing his growing academic influence.

Publication Profile

Scopus | ORCID | Google Scholar

Featured Publications

Alam, M., Khan, E. R., Alam, A., Siddiqui, F., & Tanweer, S. (2023). The DIABACARE CLOUD: Predicting diabetes using machine learning. Acta Scientiarum Technology, 46(1).

Alam, M., Khan, I. R., Alam, A., Siddiqui, F., & Tanweer, S. (2023). Smart healthcare: Making medicine intelligent. Journal of Propulsion Technology, 44(3).

Alam, M., Khan, R., Alam, A., Siddiqui, F., & Tanweer, S. (2023). AI for sustainable smart city healthcare. China Petroleum Processing and Petrochemical Technology Catalyst Research, 23(2), 2245–2258.

Ansari, A. A., Narain, L., Prasad, S. N., & Alam, M. (2022). Behaviour of motion of infinitesimal variable mass oblate body in the generalized perturbed circular restricted three-body problem. Italian Journal of Pure and Applied Mathematics, 47, 221–239.

Alam, M., Parveen, S. (2021). Shipment delivery and COVID-19: An Indian context. International Journal of Advanced Engineering Research and Science, 8(8), 145–154.