Dr. vincebt majanga | Artificial intelligence | Best Researcher Award

Dr. vincebt majanga | Artificial intelligence | Best Researcher Award

Post doctoral research fellow, university of south africa, South Africa.

Dr. Vincent Idah Majanga  is a dynamic and passionate researcher in Artificial Intelligence (AI), with over a decade of impactful experience in developing cutting-edge algorithms to solve complex real-world problems. His primary expertise lies in machine learning, deep learning, neural network optimization, and computer vision—especially for medical imaging and diagnostic tasks. Dr. Majanga is proficient in Python and Java, and his interdisciplinary skills extend to computer-aided diagnostics, simulation and modeling, computer forensics, and networking. A devoted academician and mentor, he has served in teaching and research capacities across renowned institutions in Kenya and South Africa. His current role as a Postdoctoral Researcher at the University of South Africa (UNISA) underlines his continued contributions to AI-driven healthcare solutions and intelligent systems.

Publication Profile

ORCID

📘 Education Background

Dr. Majanga completed his Ph.D. in Computer Science from the University of KwaZulu-Natal  (2018–2022), focusing on dental image segmentation and AI-based diagnostic systems. He holds an MSc in Computer Science from the University of Nairobi (2012–2014), and a BSc in Computer Science (Upper Second Class) from Kabarak University  (2009–2011). He also studied Computer Engineering at Moi University (2005–2008, credit transferred), and attended Nairobi School for his secondary education (2001–2004). His academic foundation forms the bedrock of his AI-driven research innovations.

💼 Professional Experience

Dr. Majanga is currently a Postdoctoral Researcher at UNISA  (Dec 2023–Present), where he works on deep learning, neural networks, transfer learning, and model optimization in image processing. He is also a part-time lecturer at Masinde Muliro University of Science and Technology  since 2022. Previously, he served as an Assistant Lecturer at Laikipia University  (2015–2023), contributing to curriculum development and student supervision. He has also lectured part-time at JKUAT Nakuru Campus, Dedan Kimathi University, and Kabarak University. Across these roles, he has consistently contributed to high-impact teaching, curriculum development, and academic mentorship.

🏆 Awards and Honors

Dr. Majanga has earned recognition through certifications in Research Ethics from the Clinical Trials Centre at The University of Hong Kong 🏅, completing three modules between March and April 2024—Introduction to Research Ethics, Research Ethics Evaluation, and Informed Consent. These certifications affirm his commitment to ethical research standards and responsible conduct in AI healthcare studies.

🔬 Research Focus

Dr. Majanga’s research focuses on Artificial Intelligence applications in medical imaging and diagnostics, with a specialization in deep learning, computer vision, and unsupervised segmentation. His significant contributions include blob detection and component analysis techniques for identifying cancerous lesions and dental caries in radiographs. His Ph.D. research and publications highlight strong applications of active contour models, connected component analysis, and dropout regularization in healthcare AI systems.

📝 Conclusion

Dr. Vincent Idah Majanga is a dedicated AI researcher and academician with a rich educational and professional background that aligns with transformative applications of artificial intelligence in medical diagnostics. His teaching, ethical research approach, and cross-continental academic presence have made him a valuable contributor to the global AI and computer science communities.

📚 Top Publications Highlights

  1. Automatic Blob Detection Method for Cancerous Lesions in Unsupervised Breast Histology Images
    📅 2025 | 📰 Bioengineering, 12(4), p.364
    🔎 Cited by: 8 articles

  2. Active Contours Connected Component Analysis Segmentation Method of Cancerous Lesions in Unsupervised Breast Histology Images
    📅 2025 | 📰 Bioengineering, 12(6), p.642
    🔎 Cited by: 5 articles

  3. A Survey of Dental Caries Segmentation and Detection Techniques
    📅 2022 | 📰 The Scientific World Journal, 2022
    🔎 Cited by: 21 articles

  4. Automatic Blob Detection for Dental Caries
    📅 2021 | 📰 Applied Sciences, 11(19), p.9232
    🔎 Cited by: 17 articles

  5. Dental Images’ Segmentation Using Threshold Connected Component Analysis
    📅 2021 | 📰 Computational Intelligence and Neuroscience, 2021
    🔎 Cited by: 12 articles

  6. Dropout Regularization for Automatic Segmented Dental Images
    📅 2021 | 📰 Asian Conference on Intelligent Information and Database Systems, Springer
    🔎 Cited by: 6 articles

  7. A Deep Learning Approach for Automatic Segmentation of Dental Images
    📅 2019 | 📰 MIKE 2019, Springer
    🔎 Cited by: 18 articles

  8. Component Analysis
    📅 2025 | 📰 WIDECOM 2024, Vol. 237, p.139, Springer Nature
    🔎 Cited by: 2 articles

 

Lirong Wang | Artifical Intelligence | Best Researcher Award

Ms. Lirong Wang | Artifical Intelligence | Best Researcher Award

professor at Suzhou University, China

Professor Lirong Wang is a distinguished researcher at Soochow University, specializing in intelligent wearable devices and information processing. She earned her B.S. and Ph.D. from Jilin University and has been serving as a professor since 2014. Her research integrates microelectronics, machine learning, and biomedical engineering, with a strong focus on signal acquisition and analysis. Professor Wang leads several interdisciplinary projects and supervises graduate students, fostering innovation and academic growth. As the Principal Investigator of a National Key R&D Program, she demonstrates outstanding leadership in advancing cutting-edge technologies. She has authored over 40 peer-reviewed publications in prestigious journals such as IEEE Transactions on Biomedical Engineering and holds more than 20 invention patents, highlighting her contributions to both academic research and practical innovation. In addition to her research work, she actively participates in the global scientific community as a journal reviewer and organizer of international conference sessions in wearable technology and computer science.

Publication Profile

Education🎓

Professor Lirong Wang received her formal education at Jilin University, one of China’s premier institutions, where she earned both her Bachelor of Science (B.S.) and Doctor of Philosophy (Ph.D.) degrees. Her academic training focused on electronic engineering and information processing, laying a strong foundation for her specialization in intelligent wearable devices. Throughout her educational journey, she developed expertise in signal acquisition technologies, microelectronics, and data analysis, which later became the core pillars of her research. During her Ph.D. studies, Professor Wang engaged in interdisciplinary work that bridged engineering, computer science, and biomedical applications, positioning her at the forefront of next-generation health monitoring technologies. Her rigorous academic background and commitment to research excellence have equipped her with the analytical skills and innovative mindset needed to lead complex scientific projects. This strong educational grounding has played a pivotal role in shaping her successful academic and research career at Soochow University.

Professional Experience 💼

Professor Lirong Wang has built a robust professional career centered on interdisciplinary research and academic leadership. Since 2014, she has served as a professor at Soochow University, where she specializes in intelligent wearable devices, signal acquisition, and biomedical information processing. Her professional experience spans leading national-level R&D programs and supervising numerous graduate students, fostering innovation in both academia and applied technology. As the Principal Investigator of a National Key Research and Development Program, she has demonstrated exceptional capability in managing large-scale, collaborative research projects. Professor Wang has authored over 40 peer-reviewed publications and holds more than 20 invention patents, reflecting a strong commitment to both theoretical advancement and technological innovation. Beyond her university role, she contributes to the global research community as a reviewer for prestigious journals and an organizer of international conference sessions, particularly in wearable technology and computer science. Her experience reflects a deep integration of research, mentorship, and scientific engagement.

Research Interest 🔬

Professor Lirong Wang has a diverse and forward-thinking research portfolio centered on the development and application of intelligent wearable devices and biomedical information processing. Her primary interests lie in signal acquisition technology, physiological data analysis, and the integration of machine learning with microelectronic systems for real-time health monitoring and diagnostics. She is particularly focused on designing wearable platforms capable of accurately capturing and interpreting complex biological signals, such as ECG and EMG, to support early disease detection and personalized healthcare. Her interdisciplinary approach merges principles from biomedical engineering, computer science, and electrical engineering, creating practical solutions for next-generation health technologies. Additionally, she explores low-power sensor systems, data fusion algorithms, and human-computer interaction interfaces within wearable technologies. Professor Wang’s research aims to bridge the gap between theoretical modeling and real-world applications, ultimately enhancing the reliability and usability of wearable systems in clinical, athletic, and daily life settings.

Research Skill🔎

Professor Lirong Wang possesses a comprehensive set of research skills that reflect her expertise in intelligent wearable technology, biomedical engineering, and data-driven signal processing. She is highly skilled in designing and developing advanced wearable systems, with a strong command of microelectronic circuit design, sensor integration, and embedded system programming. Her proficiency in signal acquisition and processing allows her to extract meaningful insights from complex physiological data such as ECG, EMG, and PPG. She is also adept at applying machine learning algorithms for pattern recognition, anomaly detection, and predictive modeling in healthcare applications. In addition, she demonstrates expertise in managing interdisciplinary research teams, coordinating large-scale projects, and supervising graduate-level research. Professor Wang is experienced in securing research funding, particularly as a Principal Investigator on national R&D initiatives. Her ability to bridge theoretical knowledge with practical innovation highlights her strong analytical, experimental, and collaborative research capabilities across multiple scientific domains.

Award and Honor🏆

Professor Lirong Wang has received several prestigious awards and honors in recognition of her outstanding contributions to research and innovation in the fields of intelligent wearable devices and biomedical engineering. As the Principal Investigator of a National Key R&D Program, she has been recognized at the national level for her leadership and scientific excellence. Her pioneering work has earned accolades from academic institutions and government agencies, including awards for Technological Innovation and Excellence in Research. She has also been honored for her contributions to patent development, with over 20 invention patents credited to her name, many of which have led to real-world applications. Professor Wang’s high-impact publications in leading journals such as IEEE Transactions on Biomedical Engineering have further contributed to her reputation as a top researcher. Additionally, she has received invitations to serve as a reviewer and session chair at international conferences, reflecting her respected status in the global scientific community.

Conclusion📝

Professor Lirong Wang is highly suitable for the Best Researcher Award. His sustained contributions to interdisciplinary research, innovation through patents, and leadership in national research programs mark him as a leading figure in the field of intelligent wearable devices and biomedical engineering. With some enhancement in international collaboration and outreach, his profile stands as exemplary in both academic and practical domains.

Publications Top Noted📚

  • End-to-End ECG Signal Compression Based on Temporal Information and Residual Compensation

    • Year: 2025

    • Journal: Circuits, Systems, and Signal Processing

  • QRS Wave Detection Algorithm of Dynamic ECG Signal Based on Improved U-Net Network

    • Year: 2025

    • Journal: ICIC Express Letters, Part B: Applications

  • TrCL-AGS: A Universal Sequential Triple-Stage Contrastive Learning Framework for Bacterial Detection With Across-Growth-Stage Information

    • Year: 2025

    • Journal: IEEE Internet of Things Journal

  • Multi-label Few-Shot Classification of Abnormal ECG Signals Using Metric Learning

    • Year: 2025

    • Journal: Circuits, Systems, and Signal Processing

  • Automated Deep Learning Model for Sperm Head Segmentation, Pose Correction, and Classification (Open Access)

    • Year: 2024

    • Journal: Applied Sciences (Switzerland)

  • Instance Segmentation of Mouse Brain Scanning Electron Microscopy Images Based on Fine-Tuning Nature Image Model

    • Year: 2024

    • Journal: Guangxue Jingmi Gongcheng / Optics and Precision Engineering

    • Citations: 1

  • Multi-label Classification of Arrhythmia Using Dynamic Graph Convolutional Network Based on Encoder-Decoder Framework

    • Year: 2024

    • Journal: Biomedical Signal Processing and Control

    • Citations: 4

  • Two-Stage Error Detection to Improve Electron Microscopy Image Mosaicking

    • Year: 2024

    • Journal: Computers in Biology and Medicine

    • Citations: 2