Assist. Prof. Dr. Mohanned M. H. AL-Khafaji | Artificial Intelligence | Best Researcher Award

Assist. Prof. Dr. Mohanned M. H. AL-Khafaji | Artificial Intelligence | Best Researcher Award

Engineering | University of Technology | Iraq

Dr. Mohanned Mohammed Hussein Al-Khafaji is an accomplished researcher and academic leader in production engineering, specializing in intelligent manufacturing systems, laser material processing, neural network modeling, and fuzzy logic control applications. As Dean of the College of Production Engineering and Metallurgy at the University of Technology, Baghdad, his research integrates computational modeling, automation, and artificial intelligence to enhance production efficiency and precision engineering. He has made significant contributions to the development of computer-controlled manufacturing systems, laser-based material processing, and predictive modeling using advanced algorithms. His work on CO₂ laser processing, neural network-based machining analysis, and hybrid intelligent systems has advanced industrial automation and smart manufacturing processes. Dr. Al-Khafaji’s research also explores mechatronics, robotic systems, and additive manufacturing, emphasizing simulation tools like Abaqus, COMSOL Multiphysics, and MATLAB. His scientific output reflects substantial academic influence, with 15 Scopus-indexed documents, 41 citations from 37 documents, and an h-index of 3. On Google Scholar, he has accumulated 125 citations, an h-index of 6, and an i10-index of 4, underscoring his growing impact in engineering research.

Profile

Scopus | ORCID | Google Scholar

Featured Publications

Al-Khafaji, M. M. H., & Hubeatir, K. A. (2021). CO2 laser micro-engraving of PMMA complemented by Taguchi and ANOVA methods. Journal of Physics: Conference Series, 1795(1), 012062.

Al-Khafaji, M. M. H. (2018). Neural network modeling of cutting force and chip thickness ratio for turning aluminum alloy 7075-T6. Al-Khwarizmi Engineering Journal, 14(1), 67–76.

Khayoon, M. A., Hubeatir, K. A., & Al-Khafaji, M. M. (2021). Laser transmission welding is a promising joining technology technique – A recent review. Journal of Physics: Conference Series, 1973(1), 012023.

Momena, T. F. A., Mohammed, M. M. H., & Al-Khafaji, M. M. H. (2023). Smart robot vision for a pick and place robotic system. Engineering and Technology Journal, 40(6), 1–15.

Shaker, F., Al-Khafaji, M., & Hubeatir, K. (2020). Effect of different laser welding parameters on welding strength in polymer transmission welding using semiconductor. Engineering and Technology Journal, 38(5), 761–768.*

Zaid Allal | Machine Learning | Best Researcher Award

Dr. Zaid Allal | Machine Learning | Best Researcher Award

Dr. Zaid Allal | LISTIC (Laboratory of Computer Science, Systems, Information and Knowledge Processing) | Morocco

Zaid Allal is a Moroccan researcher and doctoral candidate in computer science specializing in artificial intelligence applications for energy systems. With a solid foundation in mathematics and computing, he has built his academic and professional journey through a blend of education, research, and teaching. His work integrates machine learning with renewable energy systems, focusing on optimizing hydrogen energy technologies. Currently affiliated with the University of Savoie Mont Blanc and the LISTIC Laboratory in France, his research explores intelligent solutions for predictive maintenance, fault detection, and system stability. His dedication lies in bridging sustainable energy with advanced AI technologies.

Publication Profile

Scopus

ORCID

Google Scholar

Education Background

Zaid Allal holds a Master’s degree in Advanced Information Technology and Computing Applications from the University of Franche-Comté in France, graduating with distinction and honors. He earned a Bachelor’s degree in Mathematics and IT Systems from Mohammed First University in Oujda. Before his higher education, he received his Baccalaureate in Physical Sciences and Chemistry with honors. Additionally, he completed a certified training in Mathematics Education, coordinated with the Moroccan Ministry of Education. His strong academic background in both theoretical and applied domains provides a firm base for his research in AI and renewable energy integration.

Professional Experience

Zaid has over seven years of experience in mathematics education under the Moroccan Ministry of Education. Transitioning into research, he engaged in machine learning projects focused on renewable energy systems and hydrogen technologies at the University of Franche-Comté. Currently, he is a Ph.D. researcher at the University of Savoie Mont Blanc and contributes to the LISTIC Laboratory. His projects span predictive analytics, power consumption forecasting, and anomaly detection in smart grids. His work integrates theoretical AI models with practical energy sector challenges, contributing to research publications, international conferences, and innovative academic-industrial collaborations.

Awards and Honors

Zaid Allal has consistently demonstrated academic excellence throughout his career, receiving distinction and honors during both his undergraduate and postgraduate studies. His Master’s program recognized his outstanding performance with academic distinction. In addition to his formal qualifications, he has participated in several high-impact training initiatives, including NASA Space Apps competitions and AI ambassador programs. These accolades reflect his commitment to excellence in education, innovation, and technological advancement, highlighting his dedication to exploring and applying cutting-edge artificial intelligence methods within the energy and environmental sectors.

Research Focus

Zaid’s research centers on applying machine learning and deep learning techniques to address challenges in renewable energy systems and the hydrogen value chain. He focuses on areas such as predictive maintenance, fault and anomaly detection, power forecasting, and system optimization. His expertise extends to smart grids, hydrogen storage systems, and photovoltaic energy solutions. He employs explainable AI and reinforcement learning to develop sustainable, efficient, and interpretable models. By combining theoretical AI approaches with real-world energy applications, he aims to contribute to the advancement of intelligent and sustainable energy infrastructures.

Top  Publications

Explainable AI of Tree-Based Algorithms for Fault Detection and Diagnosis in Grid-Connected PV Systems
Published Year: 2025
Citation: 14

Review on ML Applications in Hydrogen Energy Systems
Published Year: 2025
Citation: 11

Power Consumption Prediction in Warehouses Using Variational Autoencoders and Tree-Based Regression Models
Published Year: 2024
Citation: 9

Efficient Health Indicators for RUL Prediction of PEM Fuel Cells
Published Year: 2024
Citation: 7

Machine Learning Algorithms for Solar Irradiance Prediction: A Comparative Study
Published Year: 2024
Citation: 6

Conclusion

Zaid Allal exemplifies the fusion of academic excellence, professional dedication, and research-driven innovation. With a strong foundation in mathematics and computing, he has evolved into a researcher committed to applying artificial intelligence in solving pressing energy challenges. His work across renewable energy, hydrogen systems, and smart grid technologies positions him as a valuable contributor to the evolving energy-tech landscape. Through ongoing research, publication, and collaboration, he continues to push the boundaries of sustainable innovation, striving to create data-driven and explainable solutions for the future of energy management and system optimization.

Assoc. Prof. Dr. Feng Xie | intelligence systems | Best Researcher Award

Assoc. Prof. Dr. Feng Xie | intelligence systems | Best Researcher Award

School of Information Science and Technology / Sanda University, China

Dr. Feng Xie is an accomplished Associate Professor at the School of Information Science and Technology, Sanda University, China . With a career that bridges academia and industry, he has been at the forefront of intelligent transportation systems, urban mobility, and smart city innovations. As a tech entrepreneur and researcher, he has led over 500 consultancy projects globally and holds numerous patents and software copyrights. His expertise spans traffic management, AI applications, IoT, and big data analytics, with significant contributions that have earned him prestigious awards and talent program recognitions.

Publication Profile

ORCID

🎓 Education Background:

Dr. Xie earned his Ph.D. from Nanyang Technological University, Singapore , in 2002 and completed his postdoctoral research at Tongji University, China , in 2005. His academic foundation is rooted in transportation engineering, computer science, and intelligent systems, providing the basis for his interdisciplinary approach to research and technology deployment.

💼 Professional Experience:

Currently serving as an Associate Professor at Shanghai Shanda University, Dr. Xie has also been the founder of Shanghai Van-Chance Trans. Technologies (2010–2022), where he led large-scale smart transportation projects across Asia. He worked extensively with government and industry partners, such as Singapore’s Land Transport Authority and IKEA, and directed projects like the world’s largest underground parking facility. He has also held leadership roles in cross-border technology associations and has developed systems used in cities like Beijing, Hangzhou, and Wuhan.

🏆 Awards and Honors:

Dr. Feng Xie has been recognized with several prestigious awards, including the IES Engineering Achievement Award in 2004 for his contributions to Singapore’s i-Transport project and the Shanghai Science Progress Award in 2013. He has also been selected for elite talent programs such as the Shanghai “3310” Overseas High-level Talent Program and Nanjing “321” Leading Technology Entrepreneurship Talent Program. His innovative work has resulted in 5 patents and 9 software copyrights, solidifying his impact in both academic and applied research domains.

🧠 Research Focus:

Dr. Xie’s research is centered on Intelligent Transportation Systems (ITS), AI-driven traffic management, smart parking, indoor positioning, urban planning, and emerging tech applications in IoT and quantitative finance. His efforts in traffic simulation, traveler behavior modeling, and data-driven urban development have influenced policies and technologies in smart mobility across multiple major cities. He has collaborated with Tongji University, published in Transportation Research Board journals, and contributed to key projects with global relevance.

✅ Conclusion:

With a unique blend of academic rigor and entrepreneurial innovation, Dr. Feng Xie exemplifies leadership in intelligent systems and sustainable urban technology 🌍. His work has profoundly shaped how modern cities approach mobility, data analytics, and smart infrastructure development. He continues to push the boundaries of AI, transportation science, and cross-border collaboration, earning him a rightful nomination for the Best Researcher Award.

📚 Top Publications :

PDCG-Enhanced CNN for Pattern Recognition in Time Series Data
Journal: Elsevier – Expert Systems with Applications
Year: 2022 | Cited by: 38 articles

Modeling Traveler Behavior Using Hybrid RP/SP Data and Path-Size Logit Models
Journal: Transportation Research Record: Journal of the Transportation Research Board
Year: 2012 | Cited by: 65 articles

AI-Based Traffic Incident Management Systems: A Case Study of Singapore’s i-Transport Project
Journal: IEEE Transactions on Intelligent Transportation Systems
Year: 2014 | Cited by: 79 articles

Urban Traffic Simulation Using GPS Data Fusion and Adaptive Signal Optimization
Journal: Journal of Transportation Engineering, ASCE
Year: 2016 | Cited by: 45 articles

Smart Parking Systems Powered by IoT and AI: A Case Study of Guinness Record Facility
Journal: Sensors (MDPI)
Year: 2020 | Cited by: 54 articles

Mrs. Edna Rocio Bernal Monroy | Machine Learning | Best Researcher Award

Mrs. Edna Rocio Bernal Monroy | Machine Learning | Best Researcher Award

UNAD, Colombia

Dr. Edna Rocío Bernal Monroy is an accomplished computer scientist and researcher specializing in informatics, machine learning, and healthcare technologies. With a strong academic background and diverse international experience, she has contributed significantly to health informatics, wearable sensors, and intelligent systems. Dr. Bernal Monroy has worked across multiple institutions in Colombia, France, and Spain, engaging in teaching, research, and project management. Her work in artificial intelligence (AI) for healthcare has earned her prestigious awards and recognition in the global scientific community.

Publication Profile

🎓 Education

Dr. Bernal Monroy holds a Ph.D. in Information & Communication Technology from the University of Jaén, Spain (2017–2021), focusing on informatics and AI applications in healthcare. She completed a Master of Engineering in Information Systems and Networks at Claude Bernard Lyon 1 University, France (2010–2012). Additionally, she pursued a Specialization in Management of Innovative Health Projects at INCAE Business School, Nicaragua (2016–2017) and earned a Bachelor of Engineering in Computer Science & Technology from the Pedagogical and Technological University of Colombia (2005–2010).

💼 Experience

Dr. Bernal Monroy has held teaching and research roles in various universities. She served as a Full-Time Teacher at the National Open and Distance University, Bogotá (2014–2020) and worked at the San Gil University Foundation (2013–2014) as a Systems Engineering Lecturer. She was also a faculty member at the Pedagogical and Technological University of Colombia (2014–2015). Additionally, she gained international experience as a Project Manager in Informatics at CALYDIAL, France (2011–2012).

🏆 Awards and Honors

Dr. Bernal Monroy has received several prestigious distinctions for her research contributions. She was awarded the Google LARA 2018 Google Research Award for Latin America for her doctoral project on innovation. She also served as a European Project Researcher for REMIND – H2020 – MSCA-RISE-2016 under the European Union’s research initiative. Additionally, she received the CAHI Research Fellowship from the Central American Healthcare Initiative (CAHI) in 2016 for her contributions to healthcare technology and informatics.

🔬 Research Focus

Dr. Bernal Monroy’s research interests lie at the intersection of AI, machine learning, healthcare informatics, and wearable technologies. She specializes in intelligent monitoring systems for healthcare applications, particularly in preventing pressure ulcers through wearable inertial sensors and using AI-driven analytics for healthcare improvements. Her work also extends to human activity recognition, telemedicine, and IoT solutions for health applications.

🏁 Conclusion

Dr. Edna Rocío Bernal Monroy is a leading researcher in AI-driven healthcare solutions with extensive experience in informatics, machine learning, and wearable technologies. Her pioneering research has contributed significantly to intelligent monitoring systems, earning her global recognition and prestigious awards. Through her academic contributions, research projects, and international collaborations, she continues to drive innovation in healthcare informatics and AI applications. 🚀

📚 Publications

Implementation of Machine Learning Techniques to Identify Patterns that Affect the Social Determinants of the Municipality of Tumaco – Nariño (2024) – Published in Encuentro Internacional de Educación en Ingeniería, this paper focuses on using AI to analyze social determinants of health.

Fuzzy Monitoring of In-Bed Postural Changes for the Prevention of Pressure Ulcers Using Inertial Sensors Attached to Clothing (2020) – Published in the Journal of Biomedical Informatics, this research has been cited 31 times and explores AI-driven healthcare monitoring solutions.

Intelligent System for the Prevention of Pressure Ulcers by Monitoring Postural Changes with Wearable Inertial Sensors (2019) – Published in Proceedings, this work highlights wearable sensor-based intelligent systems for healthcare and has been cited 11 times.

UJA Human Activity Recognition Multi-Occupancy Dataset (2021) – A dataset publication in collaboration with other researchers, cited 3 times.

Finite Element Method for Characterizing Microstrip Antennas with Different Substrates for High-Temperature Sensors (2017) – Explores sensor technologies for high-temperature environments.

Estudio de Apoyo para la Implementación de un Sistema de Telemedicina en Lyon, Francia (2013) – Discusses telemedicine systems and their applications in France.