Prof. Mengmeng Liao | Computer Vision | Research Excellence Award

Prof. Mengmeng Liao | Computer Vision | Research Excellence Award

Associate Professor | Shanghai University | China

Prof. Mengmeng Liao is an accomplished researcher in artificial intelligence, computer vision, pattern recognition, and image processing, with a strong record of contributions to both foundational and applied aspects of visual computing. His work focuses on developing robust algorithms for face recognition, multi-resolution modeling, adaptive subspace learning, and representation learning, addressing complex challenges in real-world environments such as noise interference, limited samples, and multi-pose variation. He has authored more than 20 SCI/EI-indexed research papers, including publications in leading international journals such as Information Sciences, Neurocomputing, Expert Systems with Applications, Electronics, and IEEE Signal Processing Letters. His research impact is reflected in Scopus metrics, with 170 citations across 159 citing documents and an h-index of 6, alongside a growing presence on Google Scholar. Prof. Liao has also contributed to several major national research initiatives, securing competitive funding from programs such as the National Natural Science Foundation and the Postdoctoral Innovative Talent Support Program. His active engagement with the global academic community includes serving as a technical committee member, session chair, and program chair for numerous international conferences. Through his interdisciplinary approach and sustained research output, Prof. Liao continues to advance the field of artificial intelligence, particularly in intelligent visual perception, pattern learning, and computational recognition systems.

Publication Profile

Scopus

Publications

Fan, X., Liao, M., Chen, L., & Hu, J. (2023). Few-shot learning for multi-POSE face recognition via hypergraph de-deflection and multi-task collaborative optimization. Electronics.

Liao, M., Fan, X., Li, Y., & Gao, M. (2023). Noise-related face image recognition based on double dictionary transform learning. Information Sciences.

Fan, X., Liao, M., Xue, J., Wu, H., Jin, L., Zhao, J., & Zhu, L. (2023). Joint coupled representation and homogeneous reconstruction for multi-resolution small sample face recognition. Neurocomputing.

Liao, M., Li, Y., & Gao, M. (2022). Graph-based adaptive and discriminative subspace learning for face image clustering. Expert Systems with Applications.

Jiang, W., Li, Y., Liao, M., & Wang, S. (2021). An improved LPI radar waveform recognition framework with LDC-Unet and SSR-Loss. IEEE Signal Processing Letters.

 

Assoc. Prof. Dr. Ammar Oad | Computer Vision | Research Excellence Award

Assoc. Prof. Dr. Ammar Oad | Computer Vision | Research Excellence Award

Professor | Shaoyang University | China

Assoc. Prof. Dr. Ammar Oad is an accomplished researcher in Artificial Intelligence with strong expertise in deep learning, computer vision, cybersecurity, and intelligent data-driven systems. His research focuses on designing advanced algorithms for image analysis, object detection, multimodal learning, cross-modal retrieval, and secure AI frameworks capable of addressing modern challenges in threat detection and autonomous systems. Dr. Oad’s scientific contributions span AI-powered fake news detection, plant disease identification using explainable AI, blockchain-enabled cybersecurity mechanisms, sustainable smart grid prediction models, and intelligent pattern recognition. His research impact is reflected in Scopus metrics of 382 citations across 374 documents with an h-index of 9, and Google Scholar metrics of 573 citations, h-index 10, and i10-index 12, demonstrating strong visibility and influence within the scientific community. His work regularly appears in reputable journals such as IEEE Access, Optik, Electronics (MDPI), and leading materials science journals through interdisciplinary collaborations. Dr. Oad also contributes to the academic community as an editorial board member and scientific reviewer for several high-impact journals. His research interests include deep neural architectures, Gaussian mixture models, ensemble learning, blockchain security frameworks, and energy-efficient AI systems for smart cities. By integrating machine learning with cybersecurity principles, he aims to develop intelligent, robust, and transparent AI solutions capable of safeguarding digital infrastructures while advancing the state of automated recognition and decision-making technologies. His growing body of research reflects innovation, rigor, and a commitment to addressing real-world AI challenges.

Profile

Scopus | ORCID | Google Scholar

Featured Publications 

Oad, A., Farooq, H., Zafar, A., Akram, B. A., Zhou, R., & Dong, F. (2024). Fake news classification methodology with enhanced BERT. IEEE Access, 12, 164491–164502.

Oad, A., Abbas, S. S., Zafar, A., Akram, B. A., Dong, F., Talpur, M. S. H., & Uddin, M. (2024). Plant leaf disease detection using ensemble learning and explainable AI. IEEE Access, 12, 156038–156049.

Oad, A., Ahmad, H. G., Talpur, M. S. H., Zhao, C., & Pervez, A. (2023). Green smart grid predictive analysis to integrate sustainable energy of emerging V2G in smart city technologies. Optik, 272, 170146.

Oad, A., Razaque, A., Tolemyssov, A., Alotaibi, M., Alotaibi, B., & Zhao, C. (2021). Blockchain-enabled transaction scanning method for money laundering detection. Electronics, 10(15), 1766.

Li, Y., Liu, W., Pang, X., Oad, A., Liang, D., Zhang, X., Tang, B., Fang, Z., Shi, Z., & Chen, J. (2024). Microwave dielectric properties, Raman spectra and sintering behavior of low loss La7Nb3W4O30 ceramics with rhombohedral structure. Ceramics International.