Mr. Abdullah Al Mamun | Deep Learning | Young Scientist Award

Mr. Abdullah Al Mamun | Deep Learning | Young Scientist Award

Lecturer, Dhaka University of Engineering & Technology (DUET), Gazipur, Bangladesh

Abdullah Al Mamun is a passionate researcher and academic professional specializing in Internet of Things (IoT), Machine Learning 🤖, and Explainable Artificial Intelligence (XAI). Currently pursuing his Master of Science in Engineering at Dhaka University of Engineering & Technology (DUET), Gazipur, he brings a vibrant combination of theoretical knowledge and hands-on research experience. His dynamic involvement in projects across sustainability, computer vision 🧠, and intelligent systems has positioned him as a promising contributor to the technology and research domain.

Publication Profile

ORCID

🎓 Education Background

Abdullah Al Mamun is presently pursuing his M.Sc. in Computer Science and Engineering at DUET, Gazipur (since October 2024), where he has already completed his Bachelor of Science in Computer Science and Engineering with distinction in 2024 🎓. His consistent academic journey showcases his dedication to computing, innovation, and advanced research.

💼 Professional Experience

Mamun is currently working as a Lecturer at the Department of CSE, Model Institute of Science and Technology, Gazipur, while also serving as a part-time Research Assistant in the Multimedia Signal & Image Processing research group at Woosong University, South Korea 🌏. With three years of tutoring experience at ACME DUET Admission Coaching Center, and two internships in web development and CMS technologies, he has gained broad teaching, mentoring, and development experience across various platforms 🖥️. His administrative roles in DUET Career & Research Club and DUET Computer Society also underscore his leadership and community contributions.

🏆 Awards and Honors

Abdullah has been recognized for his academic and problem-solving excellence. He earned the “Second Runner-Up” at BEYOND THE METRICS-2023 hosted by IUT (OIC), and “Runner-Up” at the Intra DUET Programming Contest (IDPC) 2022 🏅. He has actively participated in events like NASA Space App Challenge 2024 and DUET TECH FEST-2023, reflecting his engagement in competitive and innovation-driven activities 🚀.

🔬 Research Focus

Abdullah’s core research interests lie in IoT and sustainability, Machine Learning, Computer Vision, Explainable AI, and Reinforcement Learning 🧠📡. He has been instrumental in implementing real-world projects such as IoT-based energy monitoring systems and child safety monitoring, defect detection via XAI, and skin cancer classification using optimized deep learning models. His collaborative projects with global research teams exhibit his strong contribution to the evolving field of intelligent systems and digital transformation.

✅ Conclusion

With an impressive blend of academic rigor, technical skills, and collaborative research experience, Abdullah Al Mamun is making impactful strides in the field of computer science 🧩. His work exemplifies innovation, sustainability, and intelligence in engineering systems. He continues to grow as a researcher dedicated to contributing to global scientific advancements 🌐.

📚 Top Publications 

  1. Developed an IoT-based Smart Solar Energy Monitoring System for Environmental Sustainability3rd International Conference on Advancement in Electrical and Electronic Engineering, 2024.
    Cited by: 7 articles 📑

  2. Developing an IoT-based Child Safety and Monitoring System: An Efficient ApproachIEEE 26th International Conference on Computer and Information Technology (ICCIT), 2023.
    Cited by: 13 articles 🔐

  3. Software Defects Identification: Results Using Machine Learning and Explainable Artificial Intelligence TechniquesIEEE Journal, 2024.
    Cited by: 15 articles ⚙️

  4. IoT-Based Solutions for Uneven Roads and Balanced Vehicle Systems Using YOLOv8MDPI Sensors Journal, 2023.
    Cited by: 10 articles 🚗

  5. Optimizing Deep Learning for Skin Cancer Classification: A Computationally Efficient CNN2nd NCIM Conference, Bangladesh, 2024.
    Cited by: 5 articles 🧬

  6. Enhancing DBSCAN Dynamically: A Novel Approach to Parameter Initialization and Outlier ReductionBachelor Thesis, DUET, 2024.
    Cited by: 3 articles 🔍

 

Seyed Abolfazl Aghili | Deep Learning | Best Review Paper Award

Dr. Seyed Abolfazl Aghili | Deep Learning | Best Review Paper Award

lecturer, iran university of science and technology, Iran

Seyed Abolfazl Aghili is a passionate civil engineer with a strong focus on construction engineering and management. With a Ph.D. in Civil Engineering from the prestigious Iran University of Science and Technology (IUST), he specializes in using artificial intelligence for enhancing the resilience of HVAC systems in hospitals. His research integrates cutting-edge technologies such as machine learning and deep learning to optimize building systems and improve decision-making in construction projects. Seyed’s dedication to his field has earned him a reputation as a driven academic and professional in the civil engineering community. 🏗️🤖

Publication Profile

ORCID

Education Background

Seyed Abolfazl Aghili completed his Ph.D. in Civil Engineering with a specialization in Construction Engineering and Management from Iran University of Science and Technology (IUST) between 2019 and 2024. His doctoral thesis focused on developing a framework to assess the long-term resilience of hospital air conditioning systems using artificial intelligence. Prior to that, he earned his M.Sc. in Civil Engineering with a focus on Construction Engineering and Management at IUST, where he investigated employee selection methods in construction firms. He also holds a B.Sc. in Civil Engineering from Isfahan University of Technology (IUT). 🎓📚

Professional Experience

Seyed Abolfazl Aghili has extensive experience in both academic research and practical applications of civil engineering, particularly in construction management. He has worked on various projects involving energy management, risk management, and resilience within the construction industry. His academic journey has seen him contribute significantly to the research community, particularly in the areas of AI in construction systems and HVAC performance. Furthermore, he has been an integral part of various conferences and publications, sharing his insights on improving construction management processes through technology. 💼🏢

Awards and Honors

Seyed Abolfazl Aghili has earned several prestigious awards throughout his academic journey. He was ranked 5th among 2200 participants in the Nationwide University Entrance Exam for the Ph.D. program in Iran in 2019. Additionally, he ranked 2nd among all construction management students at Iran University of Science and Technology during his M.Sc. studies. He was also ranked in the top 1% (220th out of 32,663) in the Nationwide University Entrance Exam for the M.Sc. program in Iran in 2013. 🏆🥇

Research Focus

Seyed’s primary research interests lie in the application of machine learning and deep learning techniques in construction engineering. His work focuses on enhancing the resilience of building systems, especially HVAC systems in healthcare settings. He also explores risk management, sustainability, lean construction, and decision-making systems for project managers. His interdisciplinary research combines civil engineering with advanced AI methodologies, driving innovations in construction management and systems optimization. 🔍💡

Conclusion

Seyed Abolfazl Aghili’s academic and professional journey reflects his commitment to advancing civil engineering through innovative solutions. His focus on integrating artificial intelligence into construction systems is helping to create smarter, more sustainable, and resilient built environments. Through his work, he continues to contribute valuable insights to both the academic world and the practical sector of construction engineering. 🌍🔧

Publications Top Notes

Artificial Intelligence Approaches to Energy Management in HVAC Systems: A Systematic Review. Journal of Buildings, 15.7 (2025).

Data-driven approach to fault detection for hospital HVAC system. Journals of Smart and Sustainable Built Environment, ahead-of-print (2024).

Feasibility Study of Using BIM in Construction Site Decision Making in Iran. International Conference on Civil Engineering, Architecture and Urban Infrastructure, July 2015.

Review of digital imaging technology in safety management in the construction industry. 1st National Conference on Development of Civil Engineering, Architecture, Electricity and Mechanical in Iran (December, 2014).

The role of insurance companies in managing the crisis after earthquake. 1st National Congress of Engineering, Construction, and Evaluation of Development Projects, May 2013.

The need for a new approach to pre-crisis and post-crisis management of earthquake. 1st National Conference on Seismology and Earthquake, February 2013.

Sara Tehsin | Deep learning | Best Researcher Award

Ms. Sara Tehsin | Deep learning | Best Researcher Award

PhD Student, National University of Sciences and Technology, Islamabad, Pakistan

Sara Tehsin is a motivated and results-driven professional with over ten years of experience in Image Processing and Machine Learning. As an Engineering Lecturer at HITEC University in Taxila, Pakistan, she excels in delivering high-quality educational experiences and has a proven track record of producing outstanding results through her strong work ethic, adaptability, and effective communication skills. She is passionate about academic development and seeks opportunities to contribute her expertise while furthering her professional growth. 📚💻

Publication Profile

Google Scholar

Education

Sara Tehsin is currently pursuing a PhD in Computer Engineering at the National University of Sciences and Technology (NUST), Islamabad, where she has achieved a remarkable GPA of 3.83/4.00. Her research focuses on Digital Forensics, Deep Learning, and Digital Image Processing. She holds a Master’s degree in Computer Engineering from NUST, where she graduated with a GPA of 3.7/4.0, and a Bachelor’s degree from The Islamia University of Bahawalpur, with a GPA of 3.36/4.00. 🎓🌟

Experience

Sara has extensive teaching experience, currently serving as an Engineering Lecturer at HITEC University since September 2019, where she develops engaging curriculum and delivers lectures aligned with international standards. Previously, she was a Computer Science Lecturer at Sharif College of Engineering and Technology, and she also served as a Teaching Assistant at NUST and a Lab Engineer at Foundation University. Her roles have encompassed curriculum development, practical instruction, and student support in various computer science subjects. 👩‍🏫🔧

Research Interests

Sara’s research interests encompass Digital Forensics, Deep Learning, Digital Image Processing, and Machine Learning. She focuses on developing innovative solutions for image recognition and forgery detection, contributing significantly to the fields of computer vision and machine learning. Her work aims to enhance the accuracy and efficiency of image processing systems. 🧠🔍

Publications

Self-organizing hierarchical particle swarm optimization of correlation filters for object recognition
S. Tehsin, S. Rehman, M.O.B. Saeed, F. Riaz, A. Hassan, M. Abbas, R. Young, …
IEEE Access, 5, 24495-24502 (2017)
Cited by: 21

Improved maximum average correlation height filter with adaptive log base selection for object recognition
S. Tehsin, S. Rehman, A.B. Awan, Q. Chaudry, M. Abbas, R. Young, A. Asif
Optical Pattern Recognition XXVII, 9845, 29-41 (2016)
Cited by: 18

Fully invariant wavelet enhanced minimum average correlation energy filter for object recognition in cluttered and occluded environments
S. Tehsin, S. Rehman, F. Riaz, O. Saeed, A. Hassan, M. Khan, M.S. Alam
Pattern Recognition and Tracking XXVIII, 10203, 28-39 (2017)
Cited by: 12

Comparative analysis of zero aliasing logarithmic mapped optimal trade-off correlation filter
S. Tehsin, S. Rehman, A. Bilal, Q. Chaudry, O. Saeed, M. Abbas, R. Young
Pattern Recognition and Tracking XXVIII, 10203, 22-37 (2017)
Cited by: N/A