Mr. Andi Chen | Deep Learning | Excellence in Research Award
Nanjing University | China
20
15
10
5
0
9
6
2
Documents
h-index
Nanjing University | China
20
15
10
5
0
University of Electronic Science and Technology of China | China
Muhammad Irfan Khan is a dedicated ML Security Engineer, researcher, and academic professional specializing in artificial intelligence, cybersecurity, and image processing, currently pursuing his M.S. in Information and Communication Engineering at the University of Electronic Science and Technology of China (UESTC), Chengdu. He has worked as a Machine Learning & Security Engineer at Victoriam.ai Solution, USA, where he developed threat detection models and optimized real-time security frameworks, and as a Research Intern at LinkDoc Technology, contributing to medical image segmentation advancements. At Namal University, Pakistan, he gained substantial experience as a Research Assistant, Teaching Assistant, and Lab Engineer, supporting AI/ML research, supervising projects, and co-authoring multiple peer-reviewed publications. His research contributions include journal articles such as “Genetic Algorithm Based Hybrid Deep Learning Framework for Stability Prediction of ABO3 Perovskites in Solar Cell Applications” (Energies, 2025), “Forecasting Fluctuations in Cryptocurrency Trading Volume Using a Hybrid LSTM-DQN Reinforcement Learning” (Digital Finance Journal, 2025), “Machine Learning-Powered Malware Detection in Encrypted IoT Traffic” (IEEE Journal of IoT, 2024), and “Decoding Emotions: U-Net-Driven Pattern Recognition for fMRI Analysis” (IEEE Transactions on Medical Imaging, 2025), along with conference proceedings in ICICT and IBCAST. He has served as a reviewer for international journals and conferences, including Computational Economics (Springer), Scientific Reports (Nature), and AAAI-26. His technical strengths span deep learning, reinforcement learning, cybersecurity, computer vision, and data-driven optimization, while also excelling in leadership and collaborative research. Despite his growing recognition, his current Scopus/Google Scholar profile records 2 documents reflecting his early yet impactful stage in research.
Wali, S., Khan, M. I., & Zulfiqar, N. (2025). Forecasting fluctuations in cryptocurrency trading volume using a hybrid LSTM–DQN reinforcement learning. Digital Finance Journal.
Associate Professor, ROC Military Academy, Taiwan
Ching-Lung Fan is an associate professor in Civil Engineering at the Republic of China Military Academy. He completed his Ph.D. in 2019 from the National Kaohsiung University of Science and Technology. His professional journey reflects a strong dedication to advancing technology in the construction and civil engineering sectors, particularly through the application of machine learning and deep learning methods. 🏫
Dr. Fan holds a Master of Science (M.S.) from National Taiwan University (2006) and a Ph.D. from National Kaohsiung University of Science and Technology (2019). His academic background underscores his commitment to both theoretical and practical contributions to the field. 🎓
Dr. Fan started his academic career as an assistant professor at the Republic of China Military Academy in January 2019 and was promoted to associate professor in June 2022. His teaching and research experience has significantly impacted the study of civil engineering, especially through the integration of machine learning and data mining. 🏢
Ching-Lung Fan has received several prestigious awards, including the Phi Tau Phi Scholastic Honor (2019), Outstanding Paper Award (2021), Excellent Paper Award (2022), and Best Researcher Award (2024). In 2023, he was honored with membership in Sigma Xi, an esteemed scientific organization. 🏅
Dr. Fan’s research interests are primarily centered around machine learning, deep learning, data mining, construction performance evaluation, and risk management. His work integrates cutting-edge computational methods with civil engineering applications to enhance the quality and efficiency of construction projects. 🤖📊
Dr. Fan’s innovative contributions to civil engineering, particularly in the realm of AI-driven solutions, continue to shape the future of construction and infrastructure development. His ongoing research and recognition in the academic community highlight his expertise and impact in the field. 🌟
Integrating image processing technology and deep learning to identify crops in UAV orthoimages. CMC-Computers, Materials & Continua. (Accepted).
Predicting the construction quality of projects by using hybrid soft computing techniques. CMES-Computer Modeling in Engineering & Sciences. (Accepted).
Evaluation model for crack detection with deep learning—Improved confusion matrix based on linear features. Journal of Construction Engineering and Management (ASCE), 151(3): 04024210. (SCI).
Evaluating the performance of Taiwan airport renovation projects: An application of multiple attributes intelligent decision analysis. Buildings, 14(10): 3314. (SCI).
Deep neural networks for automated damage classification in image-based visual data of reinforced concrete structures. Heliyon, 10(19): e38104. (SCI).
Multiscale feature extraction by using convolutional neural network: Extraction of objects from multiresolution images of urban areas. ISPRS International Journal of GeoInformation, 13(1): 5. (SCI).
Ground surface structure classification using UAV remote sensing images and machine learning algorithms. Applied Geomatics, 15: 919-931. (ESCI).
Using convolutional neural networks to identify illegal roofs from unmanned aerial vehicle images. Architectural Engineering and Design Management, 20(2): 390-410. (SCI).
Evaluation of machine learning in recognizing images of reinforced concrete damage. Multimedia Tools and Applications, 82: 30221-30246. (SCI).
Supervised machine learning–Based detection of concrete efflorescence. Symmetry, 14(11): 284. (SCI).
university faculty, shahid beheshti university, Iran
🎓 Dr. Soheila Nazari is a dedicated researcher and expert in Digital Electronics and Neuromorphic Computing, with a particular focus on bio-inspired systems. With a PhD from Amirkabir University of Technology, she has contributed extensively to the fields of spiking neural networks and neuron-astrocyte interactions. Dr. Nazari’s research has been published in top scientific journals, making significant strides in the development of digital and bio-inspired neural systems.
Muhammad Sajjad holds a Doctor of Philosophy (Ph.D.) in Mathematics from Quaid-i-Azam University, Islamabad. He also completed his Master of Philosophy (M.Phil.) and Master of Science (M.Sc.) degrees from the same institution.
He has significant experience in academia, having taught various mathematics courses at Quaid-i-Azam University, National University of Modern Languages, Bahria University, and FG Sir Syed College. He has also been involved in research conferences and international collaborations.
Sajjad’s research interests span across several areas including Mathematics, Electrical Engineering, Vector Algebra, Non-commutative Algebra, Number Theory, Coding Theory, Channel Coding, and Cryptography.
He has received numerous awards and scholarships throughout his academic journey, including the International Research Award on Cybersecurity and Cryptography and being a finalist for PakCrypto by the National Centre for Cyber Security (NCCS).
Sajjad, M., Shah, T., Haq, T.U., Almutairi, B., & Xin, Q., “SPN based RGB Image Encryption over Gaussian Integers,” Heliyon, vol. 10, 2024. Link (Cited by: 0)
Sajjad, M., & Shah, T., “Decoding of cyclic codes over quaternion integers by modified Berlekamp–Massey algorithm,” Computational and Applied Mathematics, 43(2), 2024. Link (Cited by: 0)
Sajjad, M., Shah, T., Alsaud, H., & Alammari, M., “Designing pair of nonlinear components of a block cipher over quaternion integers,” AIMS Mathematics, vol. 8, 2023. Link (Cited by: 0)
Sajjad, M., Shah, T., Xin, Q., & Almutairi B., “Eisenstein field BCH codes constructions and decoding,” AIMS Mathematics, vol. 8. Link (Cited by: 0)
Sajjad, M., Shah, T., Alammari, M., & Alsaud, H., “Construction and Decoding of BCH-Codes Over the Gaussian Field,” IEEE Access, vol. 11, 2023. Link (Cited by: 0)