Prof. Dr. Fathi Touati | Nanomaterials and Applications | Best Researcher Award

Prof. Dr. Fathi Touati | Nanomaterials and Applications | Best Researcher Award

Prof. Dr. Fathi Touati | Director of Laboratory | National Institute for Physicochemical Research and Analysis | Tunisia

Academic Background

Pr. Fathi Touati is a distinguished Tunisian researcher and the Director of the Laboratoire Matériaux, Traitement et Analyse at the Institut National de Recherche et d’Analyse Physico-chimique (INRAP), located at the BiotechPole of Sidi Thabet in Tunisia. He holds advanced academic qualifications in materials science and physical chemistry, with a strong foundation in nanomaterials and electrochemistry. His scholarly excellence is reflected in his publication record, with 55 documents indexed in Scopus, accumulating a total of 673 citations and an h-index of thirteen. His consistent research output and citation performance highlight his sustained contributions and growing recognition across international scientific platforms, including Scopus and Google Scholar.

Research Focus

His research is centered on nanomaterials, photocatalysis, electrochemistry, sensors, and environmental applications. He particularly investigates the synthesis, structural properties, and functional applications of hybrid materials for use in advanced energy and environmental systems.

Work Experience

Throughout his career, Pr. Touati has held significant academic and research positions, advancing scientific inquiry in materials chemistry. As Director of INRAP’s Laboratoire Matériaux, Traitement et Analyse, he has led multiple interdisciplinary research programs that integrate nanotechnology with sustainable energy and environmental technologies. His experience includes extensive laboratory management, mentoring of young researchers, and active participation in collaborative projects with national and international institutions.

Key Contributions

Pr. Touati has made substantial contributions to the synthesis and characterization of hybrid organic-inorganic materials, the development of nanostructured metal oxides, and the exploration of their electrochemical and photocatalytic properties. His pioneering work in sol-gel processes and hydrothermal synthesis techniques has advanced the understanding of materials behavior at the nanoscale, influencing developments in sensors, catalysis, and green technology.

Awards & Recognition

He has received recognition for his outstanding scientific contributions and leadership in materials research, earning respect both in Tunisia and within the global scientific community.

Professional Roles & Memberships

Pr. Touati serves as the Director of INRAP’s Laboratoire Matériaux, Traitement et Analyse, where he leads research teams and fosters academic-industry partnerships. He is also actively engaged in professional organizations related to chemistry, nanoscience, and materials research, contributing to the dissemination of scientific knowledge and mentoring the next generation of researchers.

Profile

Scopus | ORCID

Featured Publications

Touati, F., Hafidh, A., & Hamzaoui, A. H. (2019). Synthesis of new silica xerogels based on bi-functional 1,3,4-thiadiazole and 1,2,4-triazole adducts. Journal of Sulfur Chemistry.

Kouass, S., Fadhalaoui, A., Kahlaoui, M., Dhaouadi, H., & Touati, F. (2018). Electrical and electrochemical properties of undoped CePO₄ and doped Ce₀.₉Cd₀.₁₅−ₓLi₂ₓPO₄ nanomaterials. Materials Letters.

Hafidh, A., Touati, F., Hosni, F., Hamzaoui, A. H., & Somrani, S. (2018). New silica hybrids elaborated by sol-gel process from bifunctional thiadiazole and 1,2,4-triazole precursors. Phosphorus, Sulfur and Silicon and the Related Elements.

Kouass, S., Sahbani, S., Dhaouadi, H., & Touati, F. (2017). Chromium substitution induced effects on the structure, optical and electrical properties of yttrium oxide. Journal of the Australian Ceramic Society.

Janene, F., Dhaouadi, H., Arfaoui, L., Etteyeb, N., & Touati, F. (2016). Nanoplate-like CuO: hydrothermal synthesis, characterization, and electrochemical properties. Ionics.

Impact Statement / Vision

Pr. Touati envisions advancing nanomaterial science toward cleaner and more sustainable technological solutions. His long-term goal is to develop innovative materials that contribute to environmental protection, renewable energy, and improved sensing technologies, reinforcing the vital role of chemistry in addressing global challenges.

Alexander Pogrebnjak | Nanotechnology| Best Researcher Award

Prof. Alexander Pogrebnjak | Nanotechnology | Best Researcher Award

Researcher | Sumy State University | Ukraine

Alexander Pogrebnjak is a distinguished physicist specializing in materials science and solid-state physics. He currently holds research and leadership roles across European institutions, including the Slovak University of Technology in Bratislava, IMNR in Romania, and Sumy State University in Ukraine. His multi-faceted work spans nanostructured coatings, surface modification, and biomaterials. With a Physics of Solids from Tomsk Polytechnic University and a Ph.D. in Solid-State Physics from Tomsk State University, he brings broad expertise to advanced materials engineering and interdisciplinary collaboration.

Publication Profile

Scopus

Google Scholar

Education Background

Alexander Pogrebnjak earned his Physics of Solids and Experimental Physics from Tomsk Polytechnic University, following a Ph.D. in Solid-State Physics and an M.Sc. in the same field from Tomsk State University. He further enriched his training through international internships at Lublin Polytechnic in Poland and the Slovak University of Technology in Trnava, Slovakia. This strong theoretical foundation, combined with hands-on international exposure, laid the groundwork for his innovative work in nanostructured coatings and surface modification techniques.

Professional Experience

Alexander Pogrebnjak has served as a researcher at the Slovak University of Technology’s Institute of Materials Science. Concurrently, he directs a PNRR-project at IMNR (Romania) and holds leadership and principal researcher positions at the Biomaterials Research Center of Sumy State University, Ukraine. He has also headed the Department of Nanoelectronics and Surface Modification and acted as key staff within the Erasmus+ “Jean Monnet” program. His roles reflect a dynamic career marked by research leadership, international collaboration, and applied innovation in materials and biomaterials.

Awards and Honors

Alexander Pogrebnjak has been honored with a state scholarship for outstanding scientists and the title of Honored Worker of Science and Technology by presidential decree in Ukraine. Recognized among the top ten percentage of reviewers for Elsevier journals, he is also listed among the top thousand materials scientists on Research.com. He holds honorary professorships at East Kazakhstan State Technical University and Sumy State University. He ranks among Ukraine’s most cited scientists, according to Scopus, Google Scholar, and analyses by Stanford University and Elsevier’s SciTech Strategies, placing him in the country’s top two percent.

Research Focus

Alexander’s research centers on modifying material structure and properties using intense pulsed ion and electron beams, pulsed plasma flows, and various advanced coating technologies. He specializes in designing nanostructured high-hardness, thermally stable multicomponent coatings, hydroxyapatite and ceramic coatings via magnetron sputtering and beam ablation, plasma-spraying, electro-spark alloying, and high-intensity implantation. His work extends to biomaterials, MXene synthesis, surface functionalization, and nanoparticles, blending experimental physics with cutting-edge materials engineering for biomedical and industrial applications.

Top Publications

The structure and properties of high-entropy alloys and nitride coatings based on them
Published Year: 2014
Citation: 390

Structures and properties of hard and superhard nanocomposite coatings
Published Year: 2009
Citation: 347

Microstructure, physical and chemical properties of nanostructured (Ti–Hf–Zr–V–Nb) N coatings under different deposition conditions
Published Year: 2014
Citation: 311

Irradiation resistance, microstructure and mechanical properties of nanostructured (TiZrHfVNbTa) N coatings
Published Year: 2016
Citation: 192

Structure and properties of hard and superhard nanocomposite coatings
Published Year: 2009
Citation: 183

Conclusion

Alexander Pogrebnjak exemplifies a leading international materials scientist whose work bridges physics, surface engineering, and biomaterials. With advanced degrees from Tomsk universities and experience across Europe, his leadership in research institutions underscores his innovation in nanocoatings and beam-based material modification. Recognized with top national honors and scientific rankings, he continues to push boundaries in high-performance materials and biomaterial technologies. His interdisciplinary approach and global collaborations position him at the forefront of materials science and applied physics.

Dr. Zheng Liu | Materials Science | Best Researcher Award

Dr. Zheng Liu | Materials Science | Best Researcher Award

Engineer, TaiHang Laboratory, China

Dr. Zheng Liu is a dedicated Chinese materials engineer currently serving at the Taihang National Laboratory in Chengdu, Sichuan, China. Specializing in polymer chemistry and advanced composite materials, he has made significant contributions to the development of structural and wave-transparent composites. With a strong academic foundation and multiple research publications in high-impact journals, Dr. Liu is known for his work on interface modification and high-performance fiber-reinforced composites. His research is widely recognized in both academic and industrial settings.

Publication Profile

🎓 Education Background

Dr. Zheng Liu earned his Bachelor’s Degree in 2018 from Nanchang Hangkong University. He went on to receive his Master’s Degree from Northwestern Polytechnical University in 2021, where he continued and completed his Ph.D. in 2024. His academic journey has equipped him with in-depth knowledge in polymer science, composite mechanics, and material interface engineering.

💼 Professional Experience

Since March 2024, Dr. Liu has been working as an Engineer at the Lightweight Structure and Materials Manufacturing Research Center, part of the Taihang National Laboratory & Northwestern Polytechnical University. His professional focus includes the engineering of high-performance polymer and ceramic matrix composites, particularly those used in wave-transparent applications and thermal management.

🏅 Awards and Honors

While specific awards are not listed, Dr. Zheng Liu’s academic excellence is reflected through his multiple peer-reviewed publications in top-tier journals like Composites Science and Technology, Polymer Composites, and Journal of Materials Science & Technology. His work has gained citations and is co-authored with prominent researchers, demonstrating peer recognition and scholarly impact.

🔬 Research Focus

Dr. Liu’s research interests span across Polymer Chemistry and Physics; Structural/functional integrated composites; Wave-transparent and Wave-absorbing composites; Ceramic matrix composites; Thermal Conductive Composites; and Modification of Composites Interfaces. He focuses on the synthesis and design of high-performance materials with applications in aerospace, electronics, and advanced engineering.

✅ Conclusion

With a solid academic background, active research contributions, and a position at one of China’s leading research institutions, Dr. Zheng Liu is emerging as a promising figure in the field of polymer and composite materials. His ongoing work continues to drive innovations in material science, with particular emphasis on interface engineering and multifunctional composite development.

📚 Top Publications Notes – Dr. Zheng Liu 

  1. A mini‐review of ultra‐low dielectric constant intrinsic epoxy resins: Mechanism, preparation and application
    📅 2024Polymers for Advanced Technologies
    📑 Cited by: To be updated (new article)

  2. Interfacial strengthening and processing of carbon fibers reinforced poly(ether-ether-ketone) composites: A mini-review
    📅 2024Polymer Composites
    📑 Cited by: To be updated (new article)

  3. Block copolymer functionalized quartz fibers/cyanate ester wave-transparent laminated composites
    📅 2023Journal of Materials Science & Technology
    📑 Cited by: 20+ articles (estimated)

  4. Branched Fluorine/Adamantane Interfacial Compatibilizer for PBO Fibers/Cyanate Ester Wave-Transparent Laminated Composites
    📅 2023Chinese Journal of Chemistry
    📑 Cited by: 10+ articles (estimated)

  5. Low dielectric constant and highly intrinsic thermal conductivity fluorine-containing epoxy resins with ordered liquid crystal structures
    📅 2023SusMat
    📑 Cited by: 12+ articles (estimated)

  6. PBO fibers/fluorine-containing liquid crystal compound modified cyanate ester wave-transparent laminated composites with excellent mechanical and flame retardance properties
    📅 2023Journal of Materials Science & Technology
    📑 Cited by: 15+ articles (estimated)

  7. Hybrid Polymer Membrane Functionalized PBO Fibers/Cyanate Esters Wave-Transparent Laminated Composites
    📅 2022Advanced Fiber Materials
    📑 Cited by: 20+ articles (estimated)

  8. Significantly improved interfacial properties and wave-transparent performance of PBO fibers/cyanate esters laminated composites via introducing a polydopamine/ZIF-8 hybrid membrane
    📅 2022Composites Science and Technology
    📑 Cited by: 25+ articles (estimated)

  9. Improving the comprehensive properties of PBO fibres/cyanate ester composites using a hyperbranched fluorine and epoxy containing PBO precursor
    📅 2021Composites Part A: Applied Science and Manufacturing
    📑 Cited by: 30+ articles (estimated)

  10. Optimization of PBO fibers/cyanate ester wave-transparent laminated composites via incorporation of a fluoride-containing linear interfacial compatibilizer
    📅 2021Composites Science and Technology
    📑 Cited by: 35+ articles (estimated)

 

Sulyman Olakunle Salawu | Nanotechnology | Outstanding Scientist Award

Dr. Sulyman Olakunle Salawu | Nanotechnology | Outstanding Scientist Award

Lecturer and researcher, Bowen University, Nigeria

Dr. Sulyman Olakunle Salawu is an esteemed Applied Mathematician from Nigeria, specializing in Computational Fluid Mechanics, Reactive Combustion Fluid, and Mathematical Modelling & Applications. He is a prominent researcher and academic, currently contributing to the Department of Mathematics at Bowen University, Iwo, Nigeria. Dr. Salawu is recognized for his extensive research and numerous publications in high-impact journals, earning him accolades and recognition from various prestigious institutions worldwide. 🌍📘

Profile

ORCID

Education

🎓 Ph.D. in Applied Mathematics, University of Ilorin, Ilorin, Nigeria (2017). Thesis: Heat and Mass Transfer of Inclined Magnetic Field Pressure-driven Flow past a Permeable Surface. Supervisor: Dr. Moses S. Dada. 🎓 M.Sc. in Applied Mathematics, University of Lagos, Akoka, Nigeria (2012). Dissertation: Analysis of Nonlinear Discharged Pollutant into a Channel Flow. Supervisor: Dr. Olugbenga J. Fenuga. B.Tech. in Pure & Applied Mathematics, Ladoke Akintola University of Technology, Ogbomoso, Nigeria (2008). Project: Nonlinear Thermodynamic Analysis of Reactive Fluid in a Channel. Supervisor: Dr. Olusegun O. Ajala

Experience

🧑‍🏫 Dr. Salawu has held significant academic and research positions, most notably at Bowen University, Iwo, Nigeria. His contributions to the field of Applied Mathematics are profound, encompassing computational and theoretical advancements. His research visits and collaborations, such as with the International Centre for Theoretical Physics in Italy, highlight his international recognition and collaborative efforts in advancing mathematical sciences. 🌐🔬

Research Interests

🔍 Dr. Salawu’s research interests are diverse and impactful, focusing on Computational Fluid Mechanics, Reactive Combustion Fluid, and Mathematical Modelling & Applications. His work aims to solve complex problems related to heat and mass transfer, fluid dynamics, and the application of artificial intelligence in biostatistical analysis. His projects often incorporate cutting-edge techniques and interdisciplinary approaches to address real-world challenges. 💡🌊

Awards 

🏆 Dr. Salawu has received numerous awards and recognitions, reflecting his outstanding contributions to the field of mathematics. Notable honors include the AD Scientific Index Ranking for Scientists 2024, Bowen University Highest Published Award for the 2022/2023 academic session, and the Elsevier Recognition Award for publishing multiple open-access articles. He is also listed among the Top 2 percent of world scientists by Stanford University, USA. 🌟🎖️

Publications

Thermal case exploration of electromagnetic radiative tri-hybrid nanofluid flow in Bi-directional stretching device in absorbent medium: SQLM analysis – Case Studies in Thermal Engineering, 60, 104734 (2024) [Cited by: 15] Case Studies in Thermal Engineering

Heat radiation absorption and irreversibility of electromagnetic Williamson hybridized Al2O3-CoFe2O4/H2O nanofluid: A concentrated power generation – Journal of the Indian Chemical Society, 101, 101225 (2024) [Cited by: 10] Journal of the Indian Chemical Society

Computational analysis of transient thermal diffusion and propagation of chemically reactive magneto-nanofluid, Brinkman-type flow past an oscillating absorbent plate – Partial Differential Equations in Applied Mathematics, 11, 100761 (2024) [Cited by: 8] Partial Differential Equations in Applied Mathematics

Heat transfer analysis of thermal radiative over a stretching curved surface using molybdenum disulfide and silicon dioxide composite material under the influence of solar radiation – Multidiscipline Modeling in Materials and Structures, 24, 240038 (2024) [Cited by: 7] Multidiscipline Modeling in Materials and Structures

Numerical study electroconductive non-Newtonian hybrid nanofluid flow from a stretching rotating disk with a Cattaneo-Christov heat flux model – Journal of Process Mechanical Engineering, 24, 258019 (2024) [Cited by: 5] Journal of Process Mechanical Engineering