Dr. vincebt majanga | Artificial intelligence | Best Researcher Award

Dr. vincebt majanga | Artificial intelligence | Best Researcher Award

Post doctoral research fellow, university of south africa, South Africa.

Dr. Vincent Idah Majanga  is a dynamic and passionate researcher in Artificial Intelligence (AI), with over a decade of impactful experience in developing cutting-edge algorithms to solve complex real-world problems. His primary expertise lies in machine learning, deep learning, neural network optimization, and computer vision—especially for medical imaging and diagnostic tasks. Dr. Majanga is proficient in Python and Java, and his interdisciplinary skills extend to computer-aided diagnostics, simulation and modeling, computer forensics, and networking. A devoted academician and mentor, he has served in teaching and research capacities across renowned institutions in Kenya and South Africa. His current role as a Postdoctoral Researcher at the University of South Africa (UNISA) underlines his continued contributions to AI-driven healthcare solutions and intelligent systems.

Publication Profile

ORCID

📘 Education Background

Dr. Majanga completed his Ph.D. in Computer Science from the University of KwaZulu-Natal  (2018–2022), focusing on dental image segmentation and AI-based diagnostic systems. He holds an MSc in Computer Science from the University of Nairobi (2012–2014), and a BSc in Computer Science (Upper Second Class) from Kabarak University  (2009–2011). He also studied Computer Engineering at Moi University (2005–2008, credit transferred), and attended Nairobi School for his secondary education (2001–2004). His academic foundation forms the bedrock of his AI-driven research innovations.

💼 Professional Experience

Dr. Majanga is currently a Postdoctoral Researcher at UNISA  (Dec 2023–Present), where he works on deep learning, neural networks, transfer learning, and model optimization in image processing. He is also a part-time lecturer at Masinde Muliro University of Science and Technology  since 2022. Previously, he served as an Assistant Lecturer at Laikipia University  (2015–2023), contributing to curriculum development and student supervision. He has also lectured part-time at JKUAT Nakuru Campus, Dedan Kimathi University, and Kabarak University. Across these roles, he has consistently contributed to high-impact teaching, curriculum development, and academic mentorship.

🏆 Awards and Honors

Dr. Majanga has earned recognition through certifications in Research Ethics from the Clinical Trials Centre at The University of Hong Kong 🏅, completing three modules between March and April 2024—Introduction to Research Ethics, Research Ethics Evaluation, and Informed Consent. These certifications affirm his commitment to ethical research standards and responsible conduct in AI healthcare studies.

🔬 Research Focus

Dr. Majanga’s research focuses on Artificial Intelligence applications in medical imaging and diagnostics, with a specialization in deep learning, computer vision, and unsupervised segmentation. His significant contributions include blob detection and component analysis techniques for identifying cancerous lesions and dental caries in radiographs. His Ph.D. research and publications highlight strong applications of active contour models, connected component analysis, and dropout regularization in healthcare AI systems.

📝 Conclusion

Dr. Vincent Idah Majanga is a dedicated AI researcher and academician with a rich educational and professional background that aligns with transformative applications of artificial intelligence in medical diagnostics. His teaching, ethical research approach, and cross-continental academic presence have made him a valuable contributor to the global AI and computer science communities.

📚 Top Publications Highlights

  1. Automatic Blob Detection Method for Cancerous Lesions in Unsupervised Breast Histology Images
    📅 2025 | 📰 Bioengineering, 12(4), p.364
    🔎 Cited by: 8 articles

  2. Active Contours Connected Component Analysis Segmentation Method of Cancerous Lesions in Unsupervised Breast Histology Images
    📅 2025 | 📰 Bioengineering, 12(6), p.642
    🔎 Cited by: 5 articles

  3. A Survey of Dental Caries Segmentation and Detection Techniques
    📅 2022 | 📰 The Scientific World Journal, 2022
    🔎 Cited by: 21 articles

  4. Automatic Blob Detection for Dental Caries
    📅 2021 | 📰 Applied Sciences, 11(19), p.9232
    🔎 Cited by: 17 articles

  5. Dental Images’ Segmentation Using Threshold Connected Component Analysis
    📅 2021 | 📰 Computational Intelligence and Neuroscience, 2021
    🔎 Cited by: 12 articles

  6. Dropout Regularization for Automatic Segmented Dental Images
    📅 2021 | 📰 Asian Conference on Intelligent Information and Database Systems, Springer
    🔎 Cited by: 6 articles

  7. A Deep Learning Approach for Automatic Segmentation of Dental Images
    📅 2019 | 📰 MIKE 2019, Springer
    🔎 Cited by: 18 articles

  8. Component Analysis
    📅 2025 | 📰 WIDECOM 2024, Vol. 237, p.139, Springer Nature
    🔎 Cited by: 2 articles

 

Robin Augustine | Artificial Intelligence | Excellence in Research

Assoc. Prof. Dr. Robin Augustine | Artificial Intelligence | Excellence in Research

Associate Professor, Uppsala University, Sweden

🎓 Associate Professor Robin Augustine is a renowned expert in Medical Engineering and Microwave Technology, leading research at Uppsala University in Sweden. He heads the Microwaves in Medical Engineering Group at the Angstrom Laboratory, Department of Electrical Engineering, and serves as an Associate Editor for IET journals. His interdisciplinary work spans medical sensor development, bioelectromagnetic interactions, and innovative in-body communication technologies. Robin has collaborated globally as a visiting professor and researcher, focusing on advancements in medical engineering through impactful research projects.

Publication Profile

Scopus

Education

📚 Dr. Robin Augustine earned his Ph.D. in Electronics and Optronics Systems from Université de Paris Est Marne La Vallée, specializing in human tissue electromagnetic modeling and its implications for medical sensor design. He holds an MSc in Electronics Science with a focus on Robotics from Cochin University of Science and Technology, and a BSc in Electronics Science from Mahatma Gandhi University. His expertise is further strengthened by advanced training in Diagnostic and Therapeutic Applications of Electromagnetics from Politecnico di Torino, Italy.

Experience

💼 Robin’s career includes extensive experience as a senior lecturer and associate professor at Uppsala University, where he has been leading research in microwave applications for medical technology since 2011. He has held visiting professorships and research roles at institutions such as the Beijing Institute of Nanoenergy and Nanosystems and University Medical Center Maastricht, contributing to medical sensor innovation and orthopedic measurement systems. Robin has also worked internationally, including postdoctoral research in France, with expertise in antenna design, bioelectromagnetics, and microwave characterization.

Research Focus

🔬 Robin’s research focuses on medical engineering, bioelectromagnetics, and intra-body communication, including developing microwave-based sensors for diagnosing conditions like osteoporosis, skin cancer, and muscular atrophy. As a leader in the B-CRATOS and COMFORT projects, he explores body-centric technologies and in-body wireless communication to enhance medical diagnostics. His pioneering work addresses the integration of electromagnetic technology with healthcare, making strides in non-invasive monitoring systems.

Awards and Honours

🏆 Dr. Augustine’s impactful research has attracted numerous grants and awards, including significant EU funding for projects like PERSIMMON and DIAMPS. He has secured research funding from bodies such as the Swedish Research Council, Vinnova, and the Foundation for Strategic Research, supporting his innovative work on body communication systems and medical diagnostics. His research has earned recognition through the Swedish Excellence Grant for Young Researchers and multiple grants for advancing medical engineering solutions.

Publication Top Notes

Biphasic lithium iron oxide nanocomposites for enhancement in electromagnetic interference shielding properties

Rotation insensitive implantable wireless power transfer system for medical devices using metamaterial-polarization converter

Improving burn diagnosis in medical image retrieval from grafting burn samples using B-coefficients and the CLAHE algorithm