mourad JABRANE | Computer Science | Best Researcher Award

Prof Dr. mourad JABRANE | Computer Science | Best Researcher Award

software enginee, sultan moulay slimane university, Morocco

JABRANE Mourad is a state-certified software engineer and a third-year Ph.D. candidate at the National School of Applied Sciences, Sultan Moulay Slimane University. With a passion for designing scalable and efficient systems, Mourad excels in data mining, machine learning, and distributed computing. As an adjunct professor, he effectively conveys complex concepts, making him a valuable contributor to both academia and industry.

Publication Profile

Strengths for the Award:

  1. Solid Academic Background: Jabrane Mourad holds a state-certified software engineering degree and is currently a Ph.D. candidate specializing in Big Data, showcasing a strong academic foundation in cutting-edge technologies.
  2. Research Contributions: His research work focuses on significant areas like entity resolution in Big Data, machine learning, and distributed computing. His publications in reputable journals, such as the Journal of Intelligent Information Systems and Information Systems, highlight his contributions to the field.
  3. Diverse Skill Set: Mourad has extensive expertise in programming languages (Java, Python, JavaScript, etc.), frameworks (Spring, Angular), and software engineering tools (Docker, Jenkins, Kubernetes), making him a well-rounded researcher with practical skills applicable to various domains.
  4. Teaching Experience: As an adjunct professor, Mourad has taught a wide range of subjects including data integration, advanced Java Enterprise Edition, and distributed systems. His teaching experience demonstrates his ability to communicate complex concepts clearly, which is a valuable trait in academia.
  5. International Recognition: The publication of his work in international journals and his participation in global research projects suggest that his research has gained international recognition, making him a strong candidate for the award.

Areas for Improvement:

  1. Broader Impact: While Mourad’s research contributions are significant, further efforts to collaborate on interdisciplinary projects or engage in community outreach could broaden the impact of his work.
  2. Innovation and Patents: Although he has a strong publication record, obtaining patents or developing innovative software solutions could further strengthen his candidacy for a best researcher award.
  3. Networking and Collaborations: Expanding his network and collaborating with more researchers across different institutions could help him gain more visibility and access to diverse research opportunities.

Education

Ph.D. Candidate (2021 – Present): National School of Applied Sciences, Sultan Moulay Slimane University.
Thesis title: Entity Resolution in Big Data. State Software Engineer (2018 – 2021): National School of Applied Sciences, Sultan Moulay Slimane University. MP Higher School Preparatory Classes (2016 – 2018): Centre Ibn Abdoun.
Track title: Mathematics, Physics, and Engineering Sciences.

Experience 💼

JABRANE Mourad has accumulated significant experience as an adjunct professor at the National School of Applied Sciences, where he has taught a variety of subjects including Data Integration, Data Quality, Advanced JEE, Distributed Systems, Python Programming, MATLAB, and C Programming. His roles extend to both regular courses and continuing education programs, demonstrating his versatility and commitment to teaching.

Research Focus 🔬

Mourad’s research is centered around big data, with specific interests in data mining, machine learning, and distributed computing. His Ph.D. work focuses on Entity Resolution in Big Data, where he is exploring innovative approaches to improve accuracy and efficiency in large-scale data matching.

Awards and Honors 🏅

Though the detailed awards and honors list is not provided, Mourad’s academic and professional journey is marked by his selection as a Ph.D. candidate and his appointment as an adjunct professor at a prestigious institution.

Publications 📚

Mourad has contributed extensively to the field of big data and machine learning. Below are some of his notable publications:

  1. “Erabqs: Entity resolution based on active machine learning and balancing query strategy” – Published in Journal of Intelligent Information Systems, March 2024. Cited by 3 articles.
  2. “Enhancing entity resolution with a hybrid active machine learning framework: Strategies for optimal learning in sparse datasets” – Published in Information Systems, November 2024. Cited by 7 articles.
  3. “Enhancing semantic web entity matching process using transformer neural networks and pre-trained language models” – Published in Computing and Informatics, 2024. Cited by 5 articles.
  4. “Sentiment analysis dataset in Moroccan dialect: Bridging the gap between Arabic and Latin scripted dialect” – Published in Language Resources and Evaluation, July 2024. Cited by 4 articles.

 

Conclusion:

Jabrane Mourad presents a strong case for the Best Researcher Award due to his solid academic background, notable research contributions in Big Data and machine learning, and diverse technical skills. His role as an adjunct professor and his extensive teaching experience further emphasize his ability to convey knowledge and contribute to the academic community. To enhance his candidacy, Mourad could focus on increasing the broader impact of his research through interdisciplinary collaborations and innovation. Overall, Mourad is a well-rounded candidate with the potential to make substantial contributions to the field, making him a suitable contender for the award.

Obsa Gilo Wakuma | Computer Science | Best Researcher Award

Dr. Obsa Gilo Wakuma | Computer Science | Best Researcher Award

Ass. Prof, Wallaga University, Ethiopia

Dr. Obsa Gilo Wakuma is a dedicated computer scientist specializing in deep learning and domain adaptation. With extensive experience in academia, he has contributed significantly to the field through his research and teaching. Dr. Obsa has held various positions at Wallaga University, Ethiopia, and currently serves as a research scholar at the Indian Institute of Technology Patna, India. His expertise spans multiple programming languages and database management systems, making him a versatile and valuable contributor to the field of computer science.

Profile

Strengths for the Award:

  1. Extensive Research Background: Dr. Obsa Gilo has a robust academic background, culminating in a Ph.D. in Computer Science and Engineering with a focus on deep learning approaches for efficient domain adaptation. His research in domain adaptation, particularly in sensor data and image classification, showcases his innovative contributions to the field.
  2. Publications: Dr. Gilo has a significant number of publications in reputed journals and conference proceedings. Notable among them are:
    • “Kernel bures metric for domain adaptation in sensor data” in Expert System with Applications (2024)
    • “Subdomain adaptation via correlation alignment with entropy minimization for unsupervised domain adaptation” in Pattern Analysis and Applications (2024)
    • “Rdaot: Robust unsupervised deep sub-domain adaptation through optimal transport for image classification” in IEEE Access (2023)
  3. Teaching and Mentoring: His employment history includes roles such as Lecturer and Graduate Assistant at Wallaga University, demonstrating his commitment to education and mentoring the next generation of scholars.
  4. Skills and Competencies: Dr. Gilo possesses strong technical skills in various programming languages, databases, and web development technologies, along with proficiency in English, Afaan Oromoo, and Amharic. This multilingual ability enhances his capacity to engage with diverse communities.
  5. Community Service: His experience includes academic research, teaching, training, consultation, and community service, reflecting a well-rounded professional dedicated to both academic and societal contributions.

Areas for Improvement:

  1. Practical Community Impact: While Dr. Gilo has an impressive academic and research portfolio, there could be more emphasis on the practical application of his research directly benefiting local communities. Highlighting specific projects or initiatives where his work has directly impacted community development would strengthen his case.
  2. Collaboration with Local Institutions: Greater collaboration with local institutions and involvement in projects addressing community-specific issues could further enhance his profile. Establishing partnerships with local universities, NGOs, or governmental bodies to implement his research findings in real-world settings would be beneficial.
  3. Visibility and Outreach: Increasing the visibility of his work through public lectures, community workshops, or outreach programs can help in demonstrating the broader societal impact of his research. Engaging with the community through these platforms can showcase the practical benefits of his research.

 

Education: 🎓

Dr. Obsa Gilo Wakuma holds a Ph.D. in Computer Science and Engineering from the Indian Institute of Technology Patna, with a thesis on “Deep Learning Approaches for Efficient Domain Adaptation.” He earned his M.Sc. in Computer Science from Wallaga University, where he developed an Information Extraction Model for Afaan Oromo news texts. Dr. Obsa also holds a B.Sc. in Computer Science from Wallaga University and has a strong foundation from Sibu Sire Preparatory and High School.

Experience: 💼

Dr. Obsa’s professional journey includes roles such as Recorder and Laboratory Technician at Wallaga University. He progressed to become a Graduate Assistant, Lecturer, and finally a Research Scholar at IIT Patna. His career reflects a blend of administrative, technical, and academic responsibilities, showcasing his diverse skill set and commitment to the field.

Research Interests: 🔍

Dr. Obsa’s research interests lie in deep learning, domain adaptation, and unsupervised learning. He has focused on developing efficient methods for domain adaptation in sensor data and image classification, contributing to several high-impact publications. His work aims to enhance the applicability and robustness of machine learning models in diverse environments.

Awards: 🏆

Dr. Obsa has been recognized for his academic excellence and research contributions throughout his career. He has received accolades for his innovative work in domain adaptation and deep learning, highlighting his role as a prominent researcher in the field of computer science.

Publications

  1. Unsupervised Sub-Domain Adaptation Using Optimal Transport. Journal of Visual Communication and Image Representation, 94, 103857. Cited by: 1 article.
  2. Kernel Bures Metric for Domain Adaptation in Sensor Data. Expert System with Applications, 255(Part C), 124725. Cited by: 1 article.
  3. Subdomain Adaptation via Correlation Alignment with Entropy Minimization for Unsupervised Domain Adaptation. Pattern Analysis and Applications, 27(1), 13. Cited by: 1 article.
  4. RDAOT: Robust Unsupervised Deep Sub-Domain Adaptation through Optimal Transport for Image Classification. IEEE Access. Cited by: 1 article.
  5. Integration of Discriminate Features and Similarity Preserving for Unsupervised Domain Adaptation. In 2022 IEEE 19th India Council International Conference (INDICON), pp. 1–6. Cited by: 1 article.