Ms. Ifza Shad | Computer Vision | Research Excellence Award

Ms. Ifza Shad | Computer Vision | Research Excellence Award

University of Central Punjab | Pakistan

Ms. Ifza Shad is a computer vision and artificial intelligence researcher whose work focuses on real-time object detection, medical image analysis, deep learning optimization, and multimodal perception models for complex environments. Her research integrates advanced machine learning architectures, including YOLO-based detectors, attention-driven fusion networks, and lightweight deep learning frameworks designed for resource-efficient deployment in dynamic real-world scenarios. She has contributed to cutting-edge studies in aquatic and surface litter detection, brain tumor diagnosis, protective workwear recognition, and driver-behavior monitoring systems, demonstrating a strong emphasis on safety, healthcare, and environmental sustainability. Her interdisciplinary approach merges computer vision, robotics, and large-scale data processing, allowing her to design algorithms that address challenges in automation, public health, and smart systems. She has authored impactful publications in reputable international journals indexed in Scopus and Web of Science, with her research widely cited and accessible on Google Scholar. Her scholarly record includes peer-reviewed articles, collaborative projects with international researchers, and contributions to academic seminars and conferences. She continues to advance innovative detection models and AI-driven solutions, aiming to enhance real-time decision support systems through robust, interpretable, and computationally efficient algorithms. Her research output reflects a growing citation count, supported by Scopus metrics, Google Scholar indices, and document-level analytics, emphasizing her active role in the global scientific community and her contribution to emerging intelligent systems.

Profile

ORCID

Featured Publications

Shad, I., Zhang, Z., Asim, M., Al-Habib, M., Chelloug, S. A., & Abd El-Latif, A. (2025). Deep learning-based image processing framework for efficient surface litter detection in computer vision applications. Journal of Radiation Research and Applied Sciences, 18(2), 101534.

Shad, I., Bilal, O., & Hekmat, A. (2025). Attention-driven sequential feature fusion framework for effective brain tumor diagnosis. Significances of Bioengineering & Biosciences, 7(3).

Hekmat, A., Zhang, Z., Khan, S. U. R., Shad, I., & Bilal, O. (2024). An attention-fused architecture for brain tumor diagnosis. Biomedical Signal Processing and Control, 101, 107221.

Assoc. Prof. Dr. Ammar Oad | Computer Vision | Research Excellence Award

Assoc. Prof. Dr. Ammar Oad | Computer Vision | Research Excellence Award

Professor | Shaoyang University | China

Assoc. Prof. Dr. Ammar Oad is an accomplished researcher in Artificial Intelligence with strong expertise in deep learning, computer vision, cybersecurity, and intelligent data-driven systems. His research focuses on designing advanced algorithms for image analysis, object detection, multimodal learning, cross-modal retrieval, and secure AI frameworks capable of addressing modern challenges in threat detection and autonomous systems. Dr. Oad’s scientific contributions span AI-powered fake news detection, plant disease identification using explainable AI, blockchain-enabled cybersecurity mechanisms, sustainable smart grid prediction models, and intelligent pattern recognition. His research impact is reflected in Scopus metrics of 382 citations across 374 documents with an h-index of 9, and Google Scholar metrics of 573 citations, h-index 10, and i10-index 12, demonstrating strong visibility and influence within the scientific community. His work regularly appears in reputable journals such as IEEE Access, Optik, Electronics (MDPI), and leading materials science journals through interdisciplinary collaborations. Dr. Oad also contributes to the academic community as an editorial board member and scientific reviewer for several high-impact journals. His research interests include deep neural architectures, Gaussian mixture models, ensemble learning, blockchain security frameworks, and energy-efficient AI systems for smart cities. By integrating machine learning with cybersecurity principles, he aims to develop intelligent, robust, and transparent AI solutions capable of safeguarding digital infrastructures while advancing the state of automated recognition and decision-making technologies. His growing body of research reflects innovation, rigor, and a commitment to addressing real-world AI challenges.

Profile

Scopus | ORCID | Google Scholar

Featured Publications 

Oad, A., Farooq, H., Zafar, A., Akram, B. A., Zhou, R., & Dong, F. (2024). Fake news classification methodology with enhanced BERT. IEEE Access, 12, 164491–164502.

Oad, A., Abbas, S. S., Zafar, A., Akram, B. A., Dong, F., Talpur, M. S. H., & Uddin, M. (2024). Plant leaf disease detection using ensemble learning and explainable AI. IEEE Access, 12, 156038–156049.

Oad, A., Ahmad, H. G., Talpur, M. S. H., Zhao, C., & Pervez, A. (2023). Green smart grid predictive analysis to integrate sustainable energy of emerging V2G in smart city technologies. Optik, 272, 170146.

Oad, A., Razaque, A., Tolemyssov, A., Alotaibi, M., Alotaibi, B., & Zhao, C. (2021). Blockchain-enabled transaction scanning method for money laundering detection. Electronics, 10(15), 1766.

Li, Y., Liu, W., Pang, X., Oad, A., Liang, D., Zhang, X., Tang, B., Fang, Z., Shi, Z., & Chen, J. (2024). Microwave dielectric properties, Raman spectra and sintering behavior of low loss La7Nb3W4O30 ceramics with rhombohedral structure. Ceramics International.