Mr. Zeeshan Rasheed | Machine Learning | Research Excellence Award

Mr. Zeeshan Rasheed | Machine Learning | Research Excellence Award

Lecturer Computer Science | Mir Chakar Khan Rind University Sibi Balochistan | Pakistan

Mr. Zeeshan Rasheed is a computer science researcher whose work spans machine learning, data intelligence, wireless networks, and AI-driven decision systems. His research focuses on optimizing network cooperation, developing neural models for sustainable wireless resource management, improving early disease prediction, and analyzing AI’s role in media and social systems. He has contributed to studies on sentiment analysis, intelligent network strategies, pandemic modelling, and crowdsourced data reliability. His scholarly output reflects a continuous commitment to advancing practical and socially relevant AI applications, supported by publications across multidisciplinary journals. His work also demonstrates growing academic impact with ongoing contributions to emerging technological challenges.

Citation Metrics (Google Scholar)

20

15

10

5

0

Citations
17

Documents
17

h-index
3

Citations
Documents
h-index


View Google Scholar Profile

Featured Publications

Avraham Lalum | Machine Learning | Best Researcher Award

Mr. Avraham Lalum | Machine Learning | Best Researcher Award

PhD | University of Córdoba | Israel

Avraham (Avi) Lalum is a distinguished legal scholar and researcher specializing in the intersection of real estate law, artificial intelligence, and conflict resolution. His research explores advanced AI-driven models for risk management in real estate transactions, integrating decision-oriented mediation (DOM), behavioral analytics, and deep learning to enhance investment decision frameworks. Lalum’s scholarly contributions bridge the gap between legal regulation and computational modeling, offering innovative methodologies for explainable AI in property law, negotiation, and human–machine interaction. His studies emphasize how artificial intelligence can simulate human reasoning to mitigate financial risk and promote fairness in high-stakes negotiations. His works are widely recognized in Scopus and Web of Science-indexed journals, contributing significantly to the fields of law, data science, and behavioral AI. With a growing academic impact reflected in over 300 citations and an h-index of 6 on Scopus (and 9 on Google Scholar), Lalum’s publications demonstrate both theoretical depth and practical application in LegalTech and AI ethics.

Profile

ORCID

Featured Publications 

Lalum, A., López del Río, L. C., & Villamandos, N. C. (2024). Synthetic reality mapping of real estate using deep learning-based object recognition algorithms. SN Business & Economics, Springer.
Lalum, A., Caridad López del Río, L., & Ceular Villamandos, N. (2025). Multi-dimensional AI-based modeling of real estate investment risk: A regulatory and explainable framework for investment decisions. Mathematics, MDPI.

 

Ms. Ivett-Greta Zsak | Data-Driven | Best Researcher Award

Ivett-Greta Zsak | Data-Driven | Best Researcher Award

PhD Candidate, Technical University of Cluj-Napoca, Romania

Ms. Ivett-Greta Zsak, a Romanian architect, lecturer, and PhD candidate at the Technical University of Cluj-Napoca, is an influential figure in sustainable architecture and heritage preservation. She earned her Diploma in Architecture from the University of Oradea under the board of UAUIM Bucharest and has since established herself as a practicing architect and administrator of Zero Positive Architecture SRL. Currently serving as an expert at Living Lab 10 within the EU GREEN European University Alliance for Sustainability and as an associate lecturer at the University of Oradea, she combines academic engagement with professional innovation. Her doctoral research focuses on civil engineering and installation, contributing to frameworks such as the Building Identity Passport (BIP) for prefabricated housing rehabilitation, published in Sustainability in 2025. She is actively engaged in heritage protection as the coordinator of the Ambulance for Monuments – Bihor branch and has co-authored the national Architecture Guidelines for Rural Areas. Recognized with multiple awards, including two first prizes at the 2023 Transylvania Architecture Biennale, she continues to impact both theory and practice in architecture. With 11 citations across 2 documents and an h-index of 2, her scholarly work, though emerging, reflects her growing influence at the intersection of sustainable design, cultural heritage, and participatory architecture.

Profile: Scopus | ORCID

Featured Publications

Zsak, I.-G., Pescaru, A. H., & Manea, L.-D. (2025). Beyond energy efficiency: Integrating health, building pathology, and community through the building identity passport for prefabricated housing. Sustainability, 17(17), 8176.

Zsak, G. I., Pescaru, A. H., & Manea, L.-D. (2024). Analysis on using 3D scanning and BIM to reduce the physical and non-physical construction waste for sustainable fireproofing of steel trusses. Sustainability, 16(5), 1832.

Zsak, G. I. (2020). Ghiduri de arhitectură pentru încadrarea în specificul local din mediul rural. The Order of Architects of Romania.

Zsak, G. I. (2019, September 18). Regeneration of the industrial heritage in the central area of Oradea. In Materials Science and Engineering Conference Series (Vol. 603). IOP Publishing.

Changhyoun Park | Machine Learning | Best Researcher Award

Dr. Changhyoun Park | Machine Learning | Best Researcher Award

Research Scientist | Pusan National University | South Korea

Changhyoun Park is a South Korean atmospheric scientist and research scholar currently serving as a Research Scientist at the Institute of Environmental Studies and a Lecturer in the Department of Atmospheric Environmental Sciences at Pusan National University (PNU), South Korea. With extensive international academic and research experience, including postdoctoral positions in the USA, Dr. Park has focused on the intersection of atmospheric modeling, greenhouse gas fluxes, and artificial intelligence. His work bridges theoretical research and practical applications, contributing to the advancement of climate and environmental science through teaching, mentorship, and high-impact scholarly publications.

Publication Profile

Scopus

ORCID

Google Scholar

Education Background

Dr. Changhyoun Park holds a Ph.D. in Atmospheric Sciences from Texas A&M University in the United States, where he conducted advanced research in greenhouse gas fluxes and atmospheric modeling. Prior to this, he earned both his Master’s and Bachelor’s degrees in Atmospheric Sciences from Pusan National University (PNU), South Korea. His academic path reflects a strong commitment to environmental and climate research, enhanced by international collaborations and exposure to multidisciplinary approaches in atmospheric science, machine learning, and mesoscale modeling.

Professional Experience

Dr. Park currently holds dual positions as a Research Scientist at the Institute of Environmental Studies and a Lecturer in the Department of Atmospheric Environmental Sciences at PNU. His prior appointments include postdoctoral research roles at Texas A&M University, the University of California, Los Angeles (JIFRESSE), and PNU. He also has industry experience as a Project Manager at YhKim Co. Ltd. His work includes developing AI-based prediction models, conducting mesoscale simulations, managing national-level carbon modeling projects, and mentoring gifted science students through national science education programs in Korea.

Awards and Honors

Throughout his academic and professional journey, Dr. Changhyoun Park has received multiple awards recognizing his contributions to research and science education. These include the Best Researcher of the Year Award from the Institute of Environmental Studies at PNU, an Outstanding Presentation Award by the Korean Society for Atmospheric Environment, and a Regent’s Graduate Fellowship at Texas A&M University. He was also a session winner at Texas A&M’s Student Research Week and received an Encouragement Award from Korea’s Director’s Council of Gifted Science Education.

Research Focus

Dr. Park’s research centers on micrometeorology, atmospheric carbon modeling, greenhouse gas (GHG) dynamics, and the application of artificial intelligence to environmental prediction systems. His expertise includes mesoscale numerical modeling of GHGs, machine learning-based fog and flux prediction, and eddy covariance data analysis. He has led significant projects on CO₂ radiative forcing, VOC fluxes, and vegetation uptake across East Asia and Korea. His interdisciplinary approach integrates atmospheric science with cutting-edge computational techniques to address pressing climate and environmental challenges.

Publications

Significance of Time-Series Consistency in Evaluating Machine Learning Models for Gap-Filling Multi-Level Very Tall Tower Data
Published Year: 2025
Cited by: 5

Environmental factors contributing to variations in CO2 flux over a barley–rice double‑cropping paddy field in the Korean Peninsula
Published Year: 2022
Cited by: 12

Numerical simulation of atmospheric CO2 concentration and flux over the Korean Peninsula using WRF-VPRM model during Korus-AQ 2016 campaign
Published Year: 2020
Cited by: 20

CO2 transport, variability, and budget over the southern California air basin using the high-resolution WRF-VPRM model during the CalNex 2010 campaign
Published Year: 2018
Cited by: 30

Anthropogenic and biogenic features of long-term measured CO2 flux in north downtown Houston, Texas
Published Year: 2016
Cited by: 24

Conclusion

Dr. Changhyoun Park’s academic and research journey reflects a robust commitment to advancing atmospheric and environmental sciences. His diverse roles across academia, research, and education have positioned him as a leader in micrometeorological modeling and AI applications in climate science. With numerous peer-reviewed publications and funded research projects, he continues to contribute significantly to understanding biosphere-atmosphere interactions, offering scientific insights that support sustainable environmental policy and technological innovation in atmospheric monitoring.

Zaid Allal | Machine Learning | Best Researcher Award

Dr. Zaid Allal | Machine Learning | Best Researcher Award

Dr. Zaid Allal | LISTIC (Laboratory of Computer Science, Systems, Information and Knowledge Processing) | Morocco

Zaid Allal is a Moroccan researcher and doctoral candidate in computer science specializing in artificial intelligence applications for energy systems. With a solid foundation in mathematics and computing, he has built his academic and professional journey through a blend of education, research, and teaching. His work integrates machine learning with renewable energy systems, focusing on optimizing hydrogen energy technologies. Currently affiliated with the University of Savoie Mont Blanc and the LISTIC Laboratory in France, his research explores intelligent solutions for predictive maintenance, fault detection, and system stability. His dedication lies in bridging sustainable energy with advanced AI technologies.

Publication Profile

Scopus

ORCID

Google Scholar

Education Background

Zaid Allal holds a Master’s degree in Advanced Information Technology and Computing Applications from the University of Franche-Comté in France, graduating with distinction and honors. He earned a Bachelor’s degree in Mathematics and IT Systems from Mohammed First University in Oujda. Before his higher education, he received his Baccalaureate in Physical Sciences and Chemistry with honors. Additionally, he completed a certified training in Mathematics Education, coordinated with the Moroccan Ministry of Education. His strong academic background in both theoretical and applied domains provides a firm base for his research in AI and renewable energy integration.

Professional Experience

Zaid has over seven years of experience in mathematics education under the Moroccan Ministry of Education. Transitioning into research, he engaged in machine learning projects focused on renewable energy systems and hydrogen technologies at the University of Franche-Comté. Currently, he is a Ph.D. researcher at the University of Savoie Mont Blanc and contributes to the LISTIC Laboratory. His projects span predictive analytics, power consumption forecasting, and anomaly detection in smart grids. His work integrates theoretical AI models with practical energy sector challenges, contributing to research publications, international conferences, and innovative academic-industrial collaborations.

Awards and Honors

Zaid Allal has consistently demonstrated academic excellence throughout his career, receiving distinction and honors during both his undergraduate and postgraduate studies. His Master’s program recognized his outstanding performance with academic distinction. In addition to his formal qualifications, he has participated in several high-impact training initiatives, including NASA Space Apps competitions and AI ambassador programs. These accolades reflect his commitment to excellence in education, innovation, and technological advancement, highlighting his dedication to exploring and applying cutting-edge artificial intelligence methods within the energy and environmental sectors.

Research Focus

Zaid’s research centers on applying machine learning and deep learning techniques to address challenges in renewable energy systems and the hydrogen value chain. He focuses on areas such as predictive maintenance, fault and anomaly detection, power forecasting, and system optimization. His expertise extends to smart grids, hydrogen storage systems, and photovoltaic energy solutions. He employs explainable AI and reinforcement learning to develop sustainable, efficient, and interpretable models. By combining theoretical AI approaches with real-world energy applications, he aims to contribute to the advancement of intelligent and sustainable energy infrastructures.

Top  Publications

Explainable AI of Tree-Based Algorithms for Fault Detection and Diagnosis in Grid-Connected PV Systems
Published Year: 2025
Citation: 14

Review on ML Applications in Hydrogen Energy Systems
Published Year: 2025
Citation: 11

Power Consumption Prediction in Warehouses Using Variational Autoencoders and Tree-Based Regression Models
Published Year: 2024
Citation: 9

Efficient Health Indicators for RUL Prediction of PEM Fuel Cells
Published Year: 2024
Citation: 7

Machine Learning Algorithms for Solar Irradiance Prediction: A Comparative Study
Published Year: 2024
Citation: 6

Conclusion

Zaid Allal exemplifies the fusion of academic excellence, professional dedication, and research-driven innovation. With a strong foundation in mathematics and computing, he has evolved into a researcher committed to applying artificial intelligence in solving pressing energy challenges. His work across renewable energy, hydrogen systems, and smart grid technologies positions him as a valuable contributor to the evolving energy-tech landscape. Through ongoing research, publication, and collaboration, he continues to push the boundaries of sustainable innovation, striving to create data-driven and explainable solutions for the future of energy management and system optimization.

Mr. Muhammad Tauqeer Iqbal | Machine Learning | Best Researcher Award

Mr. Muhammad Tauqeer Iqbal | Machine Learning | Best Researcher Award

Mr. Muhammad Tauqeer Iqbal , Yangzhou University, China

Iqbal Muhammad Tauqeer is a passionate researcher and master’s student at Yangzhou University, China , specializing in the domain of Machine Learning 🤖. With a solid foundation in both industry and academia, he has combined practical management experience with cutting-edge AI research. His dedication to data science applications and computer vision has led to a notable publication recognized as a best paper, showcasing his potential in the rapidly evolving tech landscape 🌟.

Professional Profile

ORCID

🎓 Education Background

Iqbal is currently pursuing his Master’s degree at Yangzhou University, China 📚, where his academic focus is on machine learning and its applications in computer vision. His academic pursuits have been driven by a commitment to advancing AI-driven solutions in environmental monitoring and digital recognition systems.

💼 Professional Experience

Before his transition into research, Iqbal gained valuable industry experience as an Assistant Production Manager at OPPO Mobile Company Pakistan 📱 for over two years. This role provided him with deep insights into production workflows and industry standards, bridging the gap between theoretical learning and practical application.

🏆 Awards and Honors

Iqbal’s research has already earned accolades, with his paper titled “A Transfer Learning-Based VGG-16 Model for COD Detection in UV–Vis Spectroscopy” being recognized as a Best Paper 🥇. This early recognition is a testament to the impact and novelty of his contributions to AI-powered environmental diagnostics.

🔬 Research Focus

His research interests lie primarily in Machine Learning, Deep Learning, Transfer Learning, and Computer Vision 🧠📊. He is particularly focused on applying these techniques to UV–Vis Spectroscopy and digital display recognition. He is currently working on a second research project that extends his work in pattern recognition and visual AI.

🔚 Conclusion

With a unique blend of industrial management experience and academic rigor, Iqbal Muhammad Tauqeer is emerging as a promising contributor to the field of Artificial Intelligence. His work in machine learning models for environmental monitoring reflects not only his technical skills but also his commitment to impactful innovation 🌍🔍.

📚 Publication Top Note

  1. Title: A Transfer Learning-Based VGG-16 Model for COD Detection in UV–Vis Spectroscopy
    Journal: Journal of Imaging
    Publisher: MDPI
    Published Year: 2025

 

Prof. Dr. Metin Zontul | Machine Learning | Best Researcher Award

Prof. Dr. Metin Zontul | Machine Learning | Best Researcher Award

Dean, Sivas University of Science and Technology, Turkey

Prof. Dr. Metin Zontul is a seasoned academic and researcher in the fields of machine learning, data mining, and intelligent systems, currently serving as Professor and Dean at the Faculty of Engineering and Natural Sciences, Sivas University of Science and Technology, Turkey. With over 30 years of academic experience, he has held various esteemed positions at several universities in Turkey and contributed significantly to national-level research projects, innovation in artificial intelligence, and academic leadership.

Publication Profile

Google Scholar

ORCID

🎓 Education Background

He earned his Ph.D. in Quantitative Methods in Business Administration (2004) from the Institute of Social Sciences, focusing his dissertation on clustering countries trading with Turkey using SOM-type artificial neural networks. He holds an M.Sc. in Computer-Aided Design, Manufacturing, and Programming (1996), where he analyzed local area network access protocols, and a B.Sc. in Computer Engineering (1993) from Middle East Technical University.

💼 Professional Experience

Prof. Zontul has held multiple academic ranks, starting as a Lecturer at Cumhuriyet University (1994–2005) and advancing to Assistant, Associate, and then Professor at institutions such as Istanbul Aydın University, Arel University, Ayvansaray University, and Topkapi University. He has been a key academic leader, serving as Dean and Department Chair across several faculties. Since 2023, he has led the Faculty of Engineering and Natural Sciences at Sivas UST. He also supervises graduate theses and collaborates on research with TUBITAK and other industry-linked projects.

🏆 Awards and Honors

Prof. Zontul has received Publication Incentive Awards from Istanbul Aydın University in 2014 and 2016 for his scholarly contributions. He is a former member of IEEE and holds a 2024 patent for a Personnel Assignment and Routing System related to unit failure and maintenance operations.

🔬 Research Focus

His research interests span machine learning, deep learning, data mining, signal processing, natural language processing, and intelligent systems. He has contributed extensively to the scientific community through 25+ peer-reviewed journal articles, 20+ conference papers, and collaborative projects involving academia and industry. His supervision of numerous theses and his involvement in over 30 national research projects reflect his commitment to practical and academic advancements in AI.

🔚 Conclusion

Prof. Dr. Metin Zontul stands as a multifaceted academician blending research, leadership, and innovation. His significant contributions to AI, education, and national research initiatives have cemented his reputation as a leading scholar in his field.

📚 Top Publications 

  1. Application of artificial intelligence neural network modeling to predict the generation of domestic, commercial and construction wastes (2021)
    Journal: Waste Management & Research
    Cited by: 92
    Co-authors: G. Coskuner, M.S. Jassim, S. Karateke

  2. Comparative performance analysis of support vector regression and artificial neural network for prediction of municipal solid waste generation (2022)
    Journal: Waste Management & Research
    Cited by: 49
    Co-authors: M.S. Jassim, G. Coskuner

  3. Urban bus arrival time prediction: A review of computational models (2013)
    Journal: International Journal of Recent Technology and Engineering (IJRTE)
    Cited by: 123
    Co-author: M. Altinkaya

  4. Measuring the efficiency of telecommunication sectors of OECD countries using data envelopment analysis (2005)
    Journal: CU Journal of Economics and Administrative Sciences
    Cited by: 41
    Co-authors: O. Kaynar, H. Bircan

  5. Wind speed forecasting using reptree and bagging methods in Kirklareli-Turkey (2013)
    Journal: Journal of Theoretical and Applied Information Technology
    Cited by: 35
    Co-authors: F. Aydin, G. Dogan, S. Sener, O. Kaynar

  6. The prediction of the ZnNi thickness and Ni% of ZnNi alloy electroplating using a machine learning method (2021)
    Journal: Transactions of the IMF
    Cited by: 34
    Co-authors: R. Katirci, H. Aktas

  7. A smart and mechanized agricultural application: From cultivation to harvest (2022)
    Journal: Applied Sciences
    Cited by: 31
    Co-authors: F. Kiani, G. Randazzo, I. Yelmen, A. Seyyedabbasi, S. Nematzadeh, F.A. Anka, et al.

 

 

Dr. Ashkan Tashk | Applied AI | Excellence Award (Any Scientific field)

Dr. Ashkan Tashk | Applied AI | Excellence Award (Any Scientific field)

postdoc, Technical University of Denmark.

Dr. Ashkan Tashk is a highly accomplished electrical engineer and postdoctoral researcher with deep expertise in telecommunications, machine learning, and biomedical imaging. With a strong academic and teaching background, he has worked across multiple prestigious institutions in Denmark, Germany, and Iran. His career blends theoretical knowledge with applied innovations, particularly in AI-driven healthcare technologies, contributing significantly to interdisciplinary research and development. He is known for his dedication to science communication, teaching, and AI-based applications in medicine.

Publication Profile

Google scholar

🎓 Education Background:

Ashkan Tashk received his Ph.D. in Electrical Engineering with a focus on Telecommunications in 2015, following his M.Sc. (2010) and B.Sc. (2006) in the same field. His undergraduate project involved designing and constructing a prototype sunlight tracking platform—an early indication of his strong interest in applied engineering and innovation. His academic journey provided a solid foundation in electronics, signal processing, and machine learning, which continues to influence his research today.

💼 Professional Experience:

Dr. Tashk currently serves as a Postdoctoral Researcher at Denmark’s leading universities (2019–present). Prior to that, he worked as a telecommunications expert at FREC and completed a research internship at Karlsruhe Institute of Technology (KIT), Germany. His career includes teaching roles at the University of Southern Denmark, University of Copenhagen, and various Iranian academic institutions. He has taught courses in electrical circuits, microprocessors, statistics, numerical analysis, and MATLAB programming, while also publishing Persian-language technical tutorials and conducting workshops in Europe and Iran.

🏆 Awards and Honors:

Dr. Ashkan Tashk became an IEEE Senior Member in 2022, recognizing his professional maturity and significant contributions to electrical engineering. He has served as a session chair at multiple international conferences such as ACSIT2020 in Copenhagen and ICCAIRO2019 in Athens. He has also completed prestigious programs like the “Science Communication” course by the Royal Danish Academy of Sciences and Letters and the RCR workshop at the University of Copenhagen, demonstrating his commitment to ethical and effective scientific practice.

🔬 Research Focus:

Ashkan’s research centers on the application of artificial intelligence and machine learning in biomedical engineering, particularly in image processing, ultrasound tomography, and cancer diagnostics. Notable projects include developing LSTM-RF models for metastatic prostate cancer prediction, CNN-based biomedical segmentation tools, and advanced metabolomics data imputation methods. His work also spans sonar signal processing, image-based fingerprint recognition, and microprocessor-controlled automation systems. These interdisciplinary projects reflect his strong problem-solving abilities and technological foresight.

🧩 Conclusion:

Dr. Ashkan Tashk is a dynamic academic, educator, and innovator whose work bridges electrical engineering and biomedical science using modern AI tools. His technical skill set, coupled with his teaching excellence and global collaborations, position him as a thought leader in the integration of engineering and healthcare. Fluent in Persian, English, and Danish, and proficient in tools like Python, MATLAB, and various PLC programming languages, he continues to impact both academia and industry with his visionary contributions.

📚 Top Publications & Citations:

Semantic Segmentation of Biomedical Images Using Deep Convolutional Neural Networks
Journal: Journal of Medical Imaging and Health Informatics
Cited by: 24 articles

Predicting Metastatic Prostate Cancer via Biochemical Parameters Using LSTM and RF
Journal: Computers in Biology and Medicine
Cited by: 18 articles

Machine Learning Imputation for Large-scale Metabolomics Data
 Journal: Metabolomics
Cited by: 10 articles

Eye-Tracking Data Analysis Using AI for Cognitive Study
 Journal: IEEE Transactions on Affective Computing
Cited by: 7 articles

Rab Nawaz Bashir | Machine Learning | Best Researcher Award

Dr. Rab Nawaz Bashir | Machine Learning | Best Researcher Award

Assistant Professor, COMSATS University, Pakistan

Dr. Rab Nawaz Bashir 🎓 is a distinguished computer scientist and Assistant Professor at COMSATS University Islamabad, Vehari Campus. He holds a Ph.D. in Computer Science from Islamia University Bahawalpur and has been instrumental in shaping research and education in artificial intelligence, machine learning, and the Internet of Things (IoT). With a passion for academic excellence, he has mentored numerous undergraduate, graduate, and Ph.D. students, guiding them toward impactful research and industry readiness. His dedication to scholarly contributions and innovative teaching has made him a respected figure in the field of computer science.

Publication Profile

Education 🎓

Dr. Bashir has a strong academic foundation, earning his Ph.D. in Computer Science (2021) from Islamia University Bahawalpur. Prior to that, he completed an MS in Computer Science (2015) from the same institution. His educational journey began with a Master in Computer Science (MCS) from Pir Mehr Ali Shah University of Arid Agriculture (2008). To further enhance his expertise, he is currently pursuing a Fellowship in Computer Science at Prince Sultan University, Saudi Arabia.

Experience 👨‍🏫

With over 15 years of experience, Dr. Bashir has significantly contributed to academia and research. Since 2022, he has served as an Assistant Professor at COMSATS University Islamabad, Vehari Campus, where he leads curriculum development, organizes seminars, and supervises undergraduate and Ph.D. research. Previously, he was a Lecturer at COMSATS University (2015–2022), University of Agriculture Faisalabad (2014–2015), and Institute of Southern Punjab, Multan (2010–2014). Before transitioning fully into academia, he worked in software development at the University of Agriculture Faisalabad (2008–2010), specializing in secure and scalable web applications using ASP.NET and SQL Server.

Awards and Honors 🏆

Dr. Bashir has been recognized multiple times for his outstanding contributions to research and academic excellence. He has received several Research Awards (2021, 2022, 2023, 2024) and Annual Performance Awards (2022, 2023, 2024) from his institution. Additionally, his leadership in securing National Standard for Education Accreditation Council (NSEAC) accreditation for the university in 2021 and 2024 highlights his commitment to academic quality and institutional development.

Research Focus 🔬

Dr. Bashir’s research spans various cutting-edge domains, including machine learning, IoT, and computer programming. His work emphasizes real-world applications, such as IoT-enabled smart agriculture, machine learning-based fraud detection, and deep learning for natural image processing. His interdisciplinary collaborations have resulted in high-impact research, contributing to advancements in federated learning, fog computing, and agricultural technology.

Conclusion 🌟

Dr. Rab Nawaz Bashir is a leading academic and researcher in computer science, with a strong focus on machine learning, IoT, and programming. His dedication to mentoring students, publishing impactful research, and advancing academic excellence has earned him numerous awards and recognitions. With a vision for future innovations, he continues to push the boundaries of computer science, contributing to both academia and industry through groundbreaking research and leadership.

Publications 📚

A Novel 1-Dimensional Cosine Chaotic Equation and Digital Image Encryption Technique (IEEE Access, 2024) – DOI: 10.1109/ACCESS.2024.3447889

Federated Learning (FL) Model of Wind Power Prediction (IEEE Access, 2024) – DOI: 10.1109/ACCESS.2024.3415781

IoT-Enabled Firmness Grades of Tomato in Cold Supply Chain Using Fusion of Whale Optimization Algorithm and Extreme Learning Machine (IEEE Access, 2024) – DOI: 10.1109/ACCESS.2024.3379327

Mushroom Species Classification in Natural Habitats Using Convolutional Neural Networks (CNN) (IEEE Access, 2024) – DOI: 10.1109/ACCESS.2024.3502543

Machine Learning and Fog Computing-Enabled Sensor Drift Management in Precision Agriculture (IEEE Sensors Journal, 2024) – DOI: 10.1109/JSEN.2024.3451662

Principal Component Analysis (PCA) and Feature Importance-Based Dimension Reduction for Reference Evapotranspiration (ET0) Predictions of Taif, Saudi Arabia (Computers and Electronics in Agriculture, 2024) – DOI: 10.1016/j.compag.2024.109036

Ensemble Deep Learning-Based Prediction of Fraudulent Cryptocurrency Transactions (IEEE Access, 2023) – DOI: 10.1109/ACCESS.2023.3310576

Internet of Things Based Weekly Crop Pest Prediction by Using Deep Neural Network  (IEEE Access, 2023) – DOI: 10.1109/ACCESS.2023.3301504

Stacked Ensemble Model for Tropical Cyclone Path Prediction (IEEE Access, 2023) – DOI: 10.1109/ACCESS.2023.3292907

Smart Reference Evapotranspiration Using Internet of Things and Hybrid Ensemble Machine Learning Approach (Internet of Things, 2023) – DOI: 10.1016/j.iot.2023.100962

Abdelhak Bouayad | machine Learning | Young Scientist Award

Dr. Abdelhak Bouayad | machine Learning | Young Scientist Award

PhD, UM6P, Morocco

📚 Abdelhak Bouayad is a dedicated researcher in artificial intelligence and privacy from the College of Computing at Mohammed VI Polytechnic University in Ben-Guérir, Morocco. His work explores innovative methods to protect sensitive data in machine learning models, ensuring both privacy and AI effectiveness. With a robust background in machine learning, data security, and federated learning, Abdelhak aims to drive advancements in privacy-preserving AI applications.

Publication Profile

Google Scholar

Education

🎓 Abdelhak Bouayad is currently pursuing a Ph.D. in Computer Science at Mohammed VI Polytechnic University under the guidance of Dr. Ismail Berrada. He holds an M.Sc. in Big Data Analytics and Smart Systems from Sidi Mohamed Ben Abdellah University, where he developed a thesis on lip reading for speech recognition, and a B.A. in Mathematics and Computer Science from the same institution in Fès, Morocco.

Experience

👨‍💻 Abdelhak has served as a Research Assistant at the College of Computing at Mohammed VI Polytechnic University since 2019. His research delves into the intersection of machine learning, privacy, and federated learning, with a focus on protocols to secure data exchanges and safeguard privacy within machine learning systems.

Research Focus

🔍 Abdelhak’s research is centered on artificial intelligence, machine learning, and privacy-preserving mechanisms. His primary focus lies in creating algorithms and protocols that protect sensitive data in machine learning models from potential exploitation. He aims to strengthen federated learning systems to ensure robust data privacy without compromising AI performance.

Awards and Honors

🏆 Abdelhak was awarded the College of Computing Fellowship for a pre-doctoral fellowship at Mohammed VI Polytechnic University from October 2018 to October 2019. This fellowship recognizes his commitment to research excellence and contributions to privacy-preserving AI methods.

Publication Highlights

NF-NIDS: Normalizing Flows for Network Intrusion Detection Systems

On the atout ticket learning problem for neural networks and its application in securing federated learning exchanges

Investigating Domain Adaptation for Network Intrusion Detection