Dr. vincebt majanga | Artificial intelligence | Best Researcher Award

Dr. vincebt majanga | Artificial intelligence | Best Researcher Award

Post doctoral research fellow, university of south africa, South Africa.

Dr. Vincent Idah Majanga  is a dynamic and passionate researcher in Artificial Intelligence (AI), with over a decade of impactful experience in developing cutting-edge algorithms to solve complex real-world problems. His primary expertise lies in machine learning, deep learning, neural network optimization, and computer vision—especially for medical imaging and diagnostic tasks. Dr. Majanga is proficient in Python and Java, and his interdisciplinary skills extend to computer-aided diagnostics, simulation and modeling, computer forensics, and networking. A devoted academician and mentor, he has served in teaching and research capacities across renowned institutions in Kenya and South Africa. His current role as a Postdoctoral Researcher at the University of South Africa (UNISA) underlines his continued contributions to AI-driven healthcare solutions and intelligent systems.

Publication Profile

ORCID

📘 Education Background

Dr. Majanga completed his Ph.D. in Computer Science from the University of KwaZulu-Natal  (2018–2022), focusing on dental image segmentation and AI-based diagnostic systems. He holds an MSc in Computer Science from the University of Nairobi (2012–2014), and a BSc in Computer Science (Upper Second Class) from Kabarak University  (2009–2011). He also studied Computer Engineering at Moi University (2005–2008, credit transferred), and attended Nairobi School for his secondary education (2001–2004). His academic foundation forms the bedrock of his AI-driven research innovations.

💼 Professional Experience

Dr. Majanga is currently a Postdoctoral Researcher at UNISA  (Dec 2023–Present), where he works on deep learning, neural networks, transfer learning, and model optimization in image processing. He is also a part-time lecturer at Masinde Muliro University of Science and Technology  since 2022. Previously, he served as an Assistant Lecturer at Laikipia University  (2015–2023), contributing to curriculum development and student supervision. He has also lectured part-time at JKUAT Nakuru Campus, Dedan Kimathi University, and Kabarak University. Across these roles, he has consistently contributed to high-impact teaching, curriculum development, and academic mentorship.

🏆 Awards and Honors

Dr. Majanga has earned recognition through certifications in Research Ethics from the Clinical Trials Centre at The University of Hong Kong 🏅, completing three modules between March and April 2024—Introduction to Research Ethics, Research Ethics Evaluation, and Informed Consent. These certifications affirm his commitment to ethical research standards and responsible conduct in AI healthcare studies.

🔬 Research Focus

Dr. Majanga’s research focuses on Artificial Intelligence applications in medical imaging and diagnostics, with a specialization in deep learning, computer vision, and unsupervised segmentation. His significant contributions include blob detection and component analysis techniques for identifying cancerous lesions and dental caries in radiographs. His Ph.D. research and publications highlight strong applications of active contour models, connected component analysis, and dropout regularization in healthcare AI systems.

📝 Conclusion

Dr. Vincent Idah Majanga is a dedicated AI researcher and academician with a rich educational and professional background that aligns with transformative applications of artificial intelligence in medical diagnostics. His teaching, ethical research approach, and cross-continental academic presence have made him a valuable contributor to the global AI and computer science communities.

📚 Top Publications Highlights

  1. Automatic Blob Detection Method for Cancerous Lesions in Unsupervised Breast Histology Images
    📅 2025 | 📰 Bioengineering, 12(4), p.364
    🔎 Cited by: 8 articles

  2. Active Contours Connected Component Analysis Segmentation Method of Cancerous Lesions in Unsupervised Breast Histology Images
    📅 2025 | 📰 Bioengineering, 12(6), p.642
    🔎 Cited by: 5 articles

  3. A Survey of Dental Caries Segmentation and Detection Techniques
    📅 2022 | 📰 The Scientific World Journal, 2022
    🔎 Cited by: 21 articles

  4. Automatic Blob Detection for Dental Caries
    📅 2021 | 📰 Applied Sciences, 11(19), p.9232
    🔎 Cited by: 17 articles

  5. Dental Images’ Segmentation Using Threshold Connected Component Analysis
    📅 2021 | 📰 Computational Intelligence and Neuroscience, 2021
    🔎 Cited by: 12 articles

  6. Dropout Regularization for Automatic Segmented Dental Images
    📅 2021 | 📰 Asian Conference on Intelligent Information and Database Systems, Springer
    🔎 Cited by: 6 articles

  7. A Deep Learning Approach for Automatic Segmentation of Dental Images
    📅 2019 | 📰 MIKE 2019, Springer
    🔎 Cited by: 18 articles

  8. Component Analysis
    📅 2025 | 📰 WIDECOM 2024, Vol. 237, p.139, Springer Nature
    🔎 Cited by: 2 articles

 

Dr. Keyong Hu | artificial intelligence | Best Researcher Award

Dr. Keyong Hu | artificial intelligence | Best Researcher Award

Teacher, Hangzhou Normal University, China

Dr. KeYong Hu is an accomplished academic and researcher specializing in artificial intelligence and new energy technology. He earned his Ph.D. from the Zhejiang University of Technology in 2016 and is currently serving as an Associate Professor at Hangzhou Normal University, within the School of Information Science and Technology. Dr. Hu has contributed significantly to the intersection of AI and energy systems, with numerous publications in international journals, showcasing his expertise in predictive modeling and intelligent optimization.

Publication Profile

ORCID

🎓 Education Background

Dr. KeYong Hu completed his doctoral studies at the Zhejiang University of Technology, Hangzhou, China, where he received his Ph.D. in 2016. His academic training laid a strong foundation in computational intelligence and energy-related engineering applications.

💼 Professional Experience

Dr. Hu holds the position of Associate Professor at Hangzhou Normal University, Hangzhou, Zhejiang, China, affiliated with the School of Information Science and Technology. He has been actively involved in teaching, mentoring, and high-impact research since earning his doctorate.

🏆 Awards and Honors

While specific awards are not listed, Dr. Hu’s prolific publishing record in top-tier peer-reviewed journals like Mathematics, Heliyon, Sustainability, and Computers and Electrical Engineering underscores his recognition and influence in the fields of AI and energy optimization.

🔬 Research Focus

Dr. Hu’s research centers on the integration of artificial intelligence with new energy technologies, particularly photovoltaic power forecasting, energy system optimization, and cross-modal data analysis. His innovative use of algorithms such as Copula functions, Transformers, and Dung Beetle Optimization showcases his depth in AI-driven energy analytics.

✅ Conclusion

Dr. KeYong Hu stands out as a forward-thinking researcher contributing impactful work at the intersection of artificial intelligence and sustainable energy. Through his academic leadership and research contributions, he continues to shape the future of intelligent energy systems in China and beyond. 🌍📈

📚 Top Publications 

🔗 Two-Stage Distributionally Robust Optimal Scheduling for Integrated Energy Systems Considering Uncertainties in Renewable Generation and Loads
Journal: Mathematics | Year: 2025
Cited by: Check on Google Scholar

🔗 Short-term Photovoltaic Forecasting Model with Parallel Multi-Channel Optimization Based on Improved Dung Beetle Algorithm
Journal: Heliyon | Year: 2024
Cited by: Check on Google Scholar

🔗 Distributed Regional Photovoltaic Power Prediction Based on Stack Integration Algorithm
Journal: Mathematics | Year: 2024
Cited by: Check on Google Scholar

🔗 Automatic Depression Prediction via Cross-Modal Attention-Based Multi-Modal Fusion in Social Networks
Journal: Computers and Electrical Engineering | Year: 2024
Cited by: Check on Google Scholar

🔗 Short-Term Photovoltaic Power Generation Prediction Based on Copula Function and CNN-CosAttention-Transformer
Journal: Sustainability | Year: 2024
Cited by: Check on Google Scholar

Dr. Saikat Gochhait | Artificial Intelligence | Best Researcher Award

Dr. Saikat Gochhait | Artificial Intelligence | Best Researcher Award

Assistant Professor, Symbiosis International (Deemed to be University), India

Dr. Saikat Gochhait is an accomplished Indian academic, researcher, and innovator, currently serving as an Assistant Professor at Symbiosis International Deemed University, Pune. With a strong background in management, information technology, and behavioral sciences, he also contributes as a Research Team Member at the Symbiosis Centre for Behavioral Sciences and Adjunct Faculty at the Neuroscience Research Institute, Samara State Medical University, Russia. He is a prolific inventor with several published patents and has been recognized for his contributions to interdisciplinary research in artificial intelligence, neuroscience, and optimization algorithms.

Publication Profile

🎓 Education Background

Dr. Gochhait earned his Doctor of Philosophy (Ph.D.) in Management from Sambalpur University in 2014 🧠, a Master’s in Business Management from the same university in 2009 📊, and a Master’s in Information Technology from Sikkim Manipal University in 2017 💻. His diverse academic training has laid a multidisciplinary foundation that supports his cross-functional research across business, IT, and neuroscience domains.

💼 Professional Experience

With over two decades of experience spanning academia and industry, Dr. Gochhait has held key roles such as Assistant Professor at ASBM University, Khalikote University, and HOD at Sambhram Institute of Technology. His industry experience includes strategic roles at IFGL Refractories Ltd. and Tata Krosaki Refractories Ltd. Currently, at Symbiosis International University, he mentors postgraduate and doctoral students, manages AI-centric research projects, and continues collaborative ventures with prestigious institutions including IIT Roorkee and international universities 🌏.

🏆 Awards and Honors

Dr. Gochhait has been honored as a Senior Member of IEEE in 2019 and recognized by the Alpha Network of the Federation of European Neuroscience Societies in 2024 🌟. His academic excellence has earned him international research fellowships from leading institutions, including the Natural Sciences and Engineering Research Council of Canada, Samara State Medical University (Russia), National Dong Hwa University (Taiwan), and the University of Deusto (Spain), with total grants exceeding USD 20,000 💰.

🔬 Research Focus

Dr. Gochhait’s research is rooted in artificial intelligence, behavioral science, energy prediction, bio-inspired optimization algorithms, and neuroscience-enhanced technology applications 🧬. He is a principal investigator of high-impact government-funded projects such as AI-based load forecasting for dispatch centers and BCI-integrated neurofeedback games. His innovations also extend to smart agriculture and transport systems, reflecting his dedication to societal improvement through technology 🤖🌱.

✅ Conclusion

Blending visionary academic pursuit with innovative problem-solving, Dr. Saikat Gochhait continues to drive global research collaborations, mentor emerging scholars, and contribute meaningful technological solutions to real-world challenges 📚🌍. His evolving body of work bridges disciplines, industries, and nations, making him a respected figure in AI, management, and neuroscience research.

📚 Top Publications

Pufferfish Optimization Algorithm: A New Bio-Inspired Metaheuristic Algorithm for Solving Optimization Problems
Biomimetics, 2024Indexed in Scopus/WoS
Cited by: 12 articles

Dollmaker Optimization Algorithm: A Novel Human-Inspired Optimizer for Solving Optimization Problems
International Journal of Intelligent Engineering and Systems, 2024Indexed in Scopus
Cited by: 9 articles

Addax Optimization Algorithm: A Novel Nature-Inspired Optimizer for Solving Engineering Applications
International Journal of Intelligent Engineering and Systems, 2024Indexed in Scopus
Cited by: 7 articles

Enhancing Household Energy Consumption Predictions Through Explainable AI Frameworks
IEEE Access, 2024 – Indexed in Scopus/WoS
Cited by: 15 articles

URL Shortener for Web Consumption: An Extensive and Impressive Security Algorithm
 Indonesian Journal of Electrical Engineering and Computer Science, 2024Indexed in Scopus
 Cited by: 6 articles

Mrs. Edna Rocio Bernal Monroy | Machine Learning | Best Researcher Award

Mrs. Edna Rocio Bernal Monroy | Machine Learning | Best Researcher Award

UNAD, Colombia

Dr. Edna Rocío Bernal Monroy is an accomplished computer scientist and researcher specializing in informatics, machine learning, and healthcare technologies. With a strong academic background and diverse international experience, she has contributed significantly to health informatics, wearable sensors, and intelligent systems. Dr. Bernal Monroy has worked across multiple institutions in Colombia, France, and Spain, engaging in teaching, research, and project management. Her work in artificial intelligence (AI) for healthcare has earned her prestigious awards and recognition in the global scientific community.

Publication Profile

🎓 Education

Dr. Bernal Monroy holds a Ph.D. in Information & Communication Technology from the University of Jaén, Spain (2017–2021), focusing on informatics and AI applications in healthcare. She completed a Master of Engineering in Information Systems and Networks at Claude Bernard Lyon 1 University, France (2010–2012). Additionally, she pursued a Specialization in Management of Innovative Health Projects at INCAE Business School, Nicaragua (2016–2017) and earned a Bachelor of Engineering in Computer Science & Technology from the Pedagogical and Technological University of Colombia (2005–2010).

💼 Experience

Dr. Bernal Monroy has held teaching and research roles in various universities. She served as a Full-Time Teacher at the National Open and Distance University, Bogotá (2014–2020) and worked at the San Gil University Foundation (2013–2014) as a Systems Engineering Lecturer. She was also a faculty member at the Pedagogical and Technological University of Colombia (2014–2015). Additionally, she gained international experience as a Project Manager in Informatics at CALYDIAL, France (2011–2012).

🏆 Awards and Honors

Dr. Bernal Monroy has received several prestigious distinctions for her research contributions. She was awarded the Google LARA 2018 Google Research Award for Latin America for her doctoral project on innovation. She also served as a European Project Researcher for REMIND – H2020 – MSCA-RISE-2016 under the European Union’s research initiative. Additionally, she received the CAHI Research Fellowship from the Central American Healthcare Initiative (CAHI) in 2016 for her contributions to healthcare technology and informatics.

🔬 Research Focus

Dr. Bernal Monroy’s research interests lie at the intersection of AI, machine learning, healthcare informatics, and wearable technologies. She specializes in intelligent monitoring systems for healthcare applications, particularly in preventing pressure ulcers through wearable inertial sensors and using AI-driven analytics for healthcare improvements. Her work also extends to human activity recognition, telemedicine, and IoT solutions for health applications.

🏁 Conclusion

Dr. Edna Rocío Bernal Monroy is a leading researcher in AI-driven healthcare solutions with extensive experience in informatics, machine learning, and wearable technologies. Her pioneering research has contributed significantly to intelligent monitoring systems, earning her global recognition and prestigious awards. Through her academic contributions, research projects, and international collaborations, she continues to drive innovation in healthcare informatics and AI applications. 🚀

📚 Publications

Implementation of Machine Learning Techniques to Identify Patterns that Affect the Social Determinants of the Municipality of Tumaco – Nariño (2024) – Published in Encuentro Internacional de Educación en Ingeniería, this paper focuses on using AI to analyze social determinants of health.

Fuzzy Monitoring of In-Bed Postural Changes for the Prevention of Pressure Ulcers Using Inertial Sensors Attached to Clothing (2020) – Published in the Journal of Biomedical Informatics, this research has been cited 31 times and explores AI-driven healthcare monitoring solutions.

Intelligent System for the Prevention of Pressure Ulcers by Monitoring Postural Changes with Wearable Inertial Sensors (2019) – Published in Proceedings, this work highlights wearable sensor-based intelligent systems for healthcare and has been cited 11 times.

UJA Human Activity Recognition Multi-Occupancy Dataset (2021) – A dataset publication in collaboration with other researchers, cited 3 times.

Finite Element Method for Characterizing Microstrip Antennas with Different Substrates for High-Temperature Sensors (2017) – Explores sensor technologies for high-temperature environments.

Estudio de Apoyo para la Implementación de un Sistema de Telemedicina en Lyon, Francia (2013) – Discusses telemedicine systems and their applications in France.

Carolina Magalhães | Machine Learning | Best Researcher Award

Dr. Carolina Magalhães | Machine Learning | Best Researcher Award

Investigadora, INEGI – Instituto de Ciência e Inovação em Engenharia Mecânica e Industrial, Portugal

👩‍🔬 Carolina Magalhães is a dedicated biomedical engineer and PhD candidate with expertise in applying AI and imaging technologies to healthcare challenges. Based in Porto, Portugal, she combines her passion for modern technology with a problem-solving mindset to develop innovative solutions in skin cancer diagnostics. Carolina has worked collaboratively with clinical experts to bridge research and practical applications, contributing significantly to advancing imaging-based decision support systems.

Publication Profile

ORCID

Education

🎓 Carolina holds a PhD in Biomedical Engineering from the Faculdade de Engenharia da Universidade do Porto (2020–2024). She also completed her MSc in Biomedical Engineering at the same institution (2016–2018) and earned her Bachelor’s in Bioengineering – Biomedical Engineering from Universidade Católica Portuguesa (2013–2016).

Experience

💼 Carolina has a rich research background, currently serving as a Graduate Research Fellow at INEGI, focusing on skin lesion diagnosis using multispectral imaging. Her work spans from leveraging machine learning models for skin cancer classification to thermal and UV imaging techniques. Previously, she contributed to projects on hyperhidrosis diagnosis, prosthetic device design, and thermal image analysis for musculoskeletal disorders, collaborating with leading hospitals and research centers in Portugal.

Research Interests

🔬 Carolina is passionate about exploring artificial intelligence, machine learning, and advanced imaging technologies for healthcare applications. Her interests include developing multispectral imaging systems, improving diagnostic tools for skin cancer, and advancing infrared thermography for clinical support systems.

Awards

🏆 Carolina’s innovative work has been recognized with prestigious research grants from the Foundation for Science and Technology (SFRH/BD/144906/2019) and other funding organizations. These awards have supported her impactful contributions to biomedical engineering and healthcare innovation.

Publications

“Systematic Review of Deep Learning Techniques in Skin Cancer Detection”
BioMedInformatics, 11/2024
Read here

“Skin Cancer Image Classification with Artificial Intelligence Strategies: A Systematic Review”
Journal of Imaging, 10/2024
Read here

“Use of Infrared Thermography for Abdominoplasty Procedures in Patients with Extensive Subcostal Scars: A Preliminary Analysis”
Plast Reconstr Surg Glob Open, 06/2023
Read here

“Classic Versus Scarpa-Sparing Abdominoplasty: An Infrared Thermographic Comparative Analysis”
J Plast Reconstr Aesthet Surg, 06/2023
Read here

“Towards an Effective Imaging-Based Decision Support System for Skin Cancer”
Handbook of Research on Applied Intelligence for Health and Clinical Informatics, 10/2022
Read here