Ms. Yin ZiJuan | artificial intelligence | Best Researcher Award

Ms. Yin ZiJuan | artificial intelligence | Best Researcher Award

Ms. Yin ZiJuan, graduate student, Shanghai University of Engineering Science, China.

Yin Zijuan is a dedicated graduate researcher at the School of Materials Science and Engineering, Shanghai University of Engineering Science. She has cultivated a unique interdisciplinary expertise that bridges materials science with artificial intelligence. Her notable work centers around intelligent surface defect detection using deep learning models. Yin gained international recognition for developing the BBW YOLO algorithm, which improves defect detection accuracy in aluminum profile manufacturing. With a passion for integrating AI into industrial applications, Yin exemplifies the new generation of scholars who are redefining engineering research through innovation, precision, and automation.

Publication Profile

Scopus

🎓 Education Background

Yin Zijuan is currently pursuing her graduate studies at the Shanghai University of Engineering Science, within the School of Materials Science and Engineering. Her academic focus lies in fusing materials engineering with advanced computational methods. During her studies, she developed specialized knowledge in deep learning, computer vision, and image processing as they relate to quality control in industrial materials. Her academic journey is marked by excellence, with her research earning publication in reputable international journals. Yin’s education reflects a strong foundation in both traditional materials science and cutting-edge AI methodologies.

🧪 Professional Experience

As a graduate researcher, Yin Zijuan has contributed to high-impact research projects focused on AI-driven defect detection in industrial materials. Her most distinguished project involved the development and implementation of the BBW YOLO algorithm, which blends Bidirectional Feature Pyramid Networks and attention mechanisms for enhanced image recognition. She has collaborated with institutions like Harbin Institute of Technology and participated in interdisciplinary studies that bridge academia and industry. Through her ongoing work, she aims to revolutionize quality assurance processes in manufacturing by deploying real-time and lightweight neural network systems.

🏆 Awards and Honors

Yin Zijuan has earned increasing recognition in the field of intelligent detection systems. Her research achievements culminated in a significant journal publication in Coatings, a Scopus and SCI-indexed journal, in 2025. This milestone established her as a rising scholar with contributions relevant to both academic and industrial domains. Her work on BBW YOLO has been lauded for its innovation, performance efficiency, and potential impact on industrial automation. Yin is also a nominee for prestigious awards including the Best Scholar Award, Outstanding Innovation Award, and Best Paper Award, all reflecting the excellence of her work.

🔬 Research Focus

Yin Zijuan’s research encompasses a wide spectrum of interdisciplinary themes including materials science, deep learning, and computer vision. Her primary focus is on developing intelligent detection algorithms for identifying surface defects in aluminum profiles. She has pioneered the BBW YOLO model, which integrates BiFPN and BiFormer attention mechanisms with a Wise-IoU v3 loss function. Her innovations improve defect detection accuracy while maintaining high processing speeds and model efficiency. Yin’s work supports the evolution of smart manufacturing and industrial automation, positioning her as a key contributor to the fusion of AI and engineering.

📌 Conclusion

Yin Zijuan exemplifies the future of smart materials research through her fusion of artificial intelligence and industrial materials science. Her work is not only academically rigorous but also practically relevant, addressing real-world problems in manufacturing. From algorithmic innovation to high-impact publication and inter-institutional collaboration, she has demonstrated exceptional promise as a research scholar. With her continued contributions, Yin is poised to lead transformative advancements in intelligent quality control systems. She stands as a worthy nominee for multiple academic honors and awards recognizing innovation, research excellence, and scholarly distinction.

📄 Top Publications Notes

  1. BBW YOLO: Intelligent Detection Algorithms for Aluminium Profile Material Surface Defects

  2. Thermal deformation behavior and microstructural evolution of the rapidly-solidified Al–Zn–Mg–Cu alloy in hot isostatic pressing state

 

 

 

 

 

Sara Tehsin | Deep learning | Best Researcher Award

Ms. Sara Tehsin | Deep learning | Best Researcher Award

PhD Student, National University of Sciences and Technology, Islamabad, Pakistan

Sara Tehsin is a motivated and results-driven professional with over ten years of experience in Image Processing and Machine Learning. As an Engineering Lecturer at HITEC University in Taxila, Pakistan, she excels in delivering high-quality educational experiences and has a proven track record of producing outstanding results through her strong work ethic, adaptability, and effective communication skills. She is passionate about academic development and seeks opportunities to contribute her expertise while furthering her professional growth. 📚💻

Publication Profile

Google Scholar

Education

Sara Tehsin is currently pursuing a PhD in Computer Engineering at the National University of Sciences and Technology (NUST), Islamabad, where she has achieved a remarkable GPA of 3.83/4.00. Her research focuses on Digital Forensics, Deep Learning, and Digital Image Processing. She holds a Master’s degree in Computer Engineering from NUST, where she graduated with a GPA of 3.7/4.0, and a Bachelor’s degree from The Islamia University of Bahawalpur, with a GPA of 3.36/4.00. 🎓🌟

Experience

Sara has extensive teaching experience, currently serving as an Engineering Lecturer at HITEC University since September 2019, where she develops engaging curriculum and delivers lectures aligned with international standards. Previously, she was a Computer Science Lecturer at Sharif College of Engineering and Technology, and she also served as a Teaching Assistant at NUST and a Lab Engineer at Foundation University. Her roles have encompassed curriculum development, practical instruction, and student support in various computer science subjects. 👩‍🏫🔧

Research Interests

Sara’s research interests encompass Digital Forensics, Deep Learning, Digital Image Processing, and Machine Learning. She focuses on developing innovative solutions for image recognition and forgery detection, contributing significantly to the fields of computer vision and machine learning. Her work aims to enhance the accuracy and efficiency of image processing systems. 🧠🔍

Publications

Self-organizing hierarchical particle swarm optimization of correlation filters for object recognition
S. Tehsin, S. Rehman, M.O.B. Saeed, F. Riaz, A. Hassan, M. Abbas, R. Young, …
IEEE Access, 5, 24495-24502 (2017)
Cited by: 21

Improved maximum average correlation height filter with adaptive log base selection for object recognition
S. Tehsin, S. Rehman, A.B. Awan, Q. Chaudry, M. Abbas, R. Young, A. Asif
Optical Pattern Recognition XXVII, 9845, 29-41 (2016)
Cited by: 18

Fully invariant wavelet enhanced minimum average correlation energy filter for object recognition in cluttered and occluded environments
S. Tehsin, S. Rehman, F. Riaz, O. Saeed, A. Hassan, M. Khan, M.S. Alam
Pattern Recognition and Tracking XXVIII, 10203, 28-39 (2017)
Cited by: 12

Comparative analysis of zero aliasing logarithmic mapped optimal trade-off correlation filter
S. Tehsin, S. Rehman, A. Bilal, Q. Chaudry, O. Saeed, M. Abbas, R. Young
Pattern Recognition and Tracking XXVIII, 10203, 22-37 (2017)
Cited by: N/A