Hisham AbouGrad | Artificial intelligence | Best Academic Researcher Award

Dr. Hisham AbouGrad | Artificial intelligence | Best Academic Researcher Award

Dr. Hisham AbouGrad , Senior Lecturer , University of East London – UEL , United Kingdom.

Dr. Hisham AbouGrad is a dynamic academic and industry expert in computer science and digital technologies. Currently a Senior Lecturer at the University of East London, he brings over two decades of experience in higher education and IT. Known for bridging theory with practice, he has supervised innovative projects in AI, FinTech, and mobile app development. Dr. AbouGrad also leads international academic collaborations and contributes to top-tier journals. He is a Fellow of the Higher Education Academy and an active member of the British Computer Society, with a passion for enhancing digital learning, scientific problem-solving, and sustainable technology.

Publication Profile

Scopus

ORCID

Google scholar

🎓 Education Background

Dr. Hisham AbouGrad earned his Doctorate in Professional Studies (DProf) from London South Bank University, focusing on Workflow Information Systems Performance using BPM methodologies. He also holds a Master of Science (MSc) in Software Engineering from the University of Bradford and a Master of Business Administration (MBA) in Management from the University of Lincoln. Additionally, he completed a Postgraduate Certificate in Higher Education Practice (PGCHEP) from the University of Plymouth. His academic credentials are enhanced by certifications in project management and IT, including CITP from BCS and PMP qualifications, reinforcing his foundation in both pedagogy and technical leadership.

💼 Professional Experience

Dr. AbouGrad’s career spans prestigious academic institutions and industry roles. Since 2021, he has served as a Senior Lecturer at the University of East London, where he also fosters international collaborations. Previously, he held teaching and leadership roles at ICON College, QA Higher Education, GSM London, and the University of Plymouth. From 2011 to 2019, he was a doctoral researcher at London South Bank University. With vast teaching experience in computing, business management, and information systems, Dr. AbouGrad has mentored numerous PhD and DProf students while shaping curricula aligned with technological advancements and practical industry applications.

🏆 Awards and Honors

Dr. Hisham AbouGrad has been recognized for his commitment to academic excellence and professional contribution. He is a Fellow of the UK Higher Education Academy (FHEA), a Certified IT Professional (CITP) with the British Computer Society (BCS), and has received qualifications in IT Quality Management (ITQM). He is a founding member of UEL’s FinTech Centre and contributes actively to academic committees and journal editorial boards. As a reviewer for reputed journals like IEEE TCE, SAGE, Elsevier, and Emerald, he consistently upholds research quality, earning professional credibility and trust in the global academic and scientific communities.

🔬 Research Focus

Dr. AbouGrad’s research integrates Artificial Intelligence, FinTech, Machine Learning, Information Security, and Multi-Criteria Decision Making (MCDM) with Business Process Management (BPM) and Workflow Systems. His work aims to create scalable, secure, and intelligent digital solutions. Projects under his supervision include AI-based financial prediction systems, eCommerce fraud detection using neural networks, and mobile payment technologies. His recent studies explore AI-driven stock prediction, sentiment analysis, and fake review detection—highlighting his goal to solve real-world problems through data science, machine learning, and performance analysis. He also researches Decision Support Systems (DSS), ECM, GIS, and user-centered eCommerce design.

🔚 Conclusion

Dr. Hisham AbouGrad is a passionate educator, strategic researcher, and technology advocate whose career is marked by innovation, collaboration, and impact. His multifaceted expertise across academia and industry supports students, institutions, and global communities in adapting to digital transformation. Through research, mentorship, and leadership, he contributes to solving complex challenges in AI, FinTech, and Information Systems. With a forward-thinking mindset, he continues to influence academic practices, elevate IT performance, and foster global academic relationships. His legacy reflects both the rigor of scholarly inquiry and the relevance of applied science in the 21st century.

📚 Top Publications with Details

  1. AI-Framework to Detect eCommerce Fake Reviews: A Hybrid Neural Network Machine Learning Model
    Published: 2024, Book: Artificial Intelligence and Computational Technologies
    Cited by: 1

  2. Financial Decision-Making AI-Framework to Predict Stock Price Using LSTM Algorithm and NLP-Driven Sentiment Analysis Model
    Published: 2025, Conference: Annual International Congress on Computer Science
    Cited by: 1

  3. Decision Making by Applying Machine Learning Techniques to Mitigate Spam SMS Attacks
    Published: 2023, Conference: International Conference on Deep Learning, Artificial Intelligence and Robotics
    Cited by: 5

  4. Developing the Business Process Management Performance of an Information System Using the Delphi Study Technique
    Published: 2019, Conference: EAI International Conference on Technology, Innovation, Entrepreneurship and Education
    Cited by: 5

  5. Applying the Delphi Method to Measure Enterprise Content Management Workflow System Performance
    Published: 2022, Journal: Lecture Notes in Networks and Systems (Springer)
    Cited by: 1

  6. The Impact of Business Process Management Values on Enterprise Content Management Workflow Systems Performance
    Published: 2020, Thesis: London South Bank University
    Cited by: 1

  7. Intelligent Computing, Proceedings of the 2022 Computing Conference
    Published: 2022, Publisher: Springer International Publishing
    Cited by: 23

  8. Key Digital Trends in Artificial Intelligence and Robotics: Proceedings of ICDLAIR 2022
    Published: 2023, Publisher: Springer International Publishing
    Cited by: 1

 

Lirong Wang | Artifical Intelligence | Best Researcher Award

Ms. Lirong Wang | Artifical Intelligence | Best Researcher Award

professor at Suzhou University, China

Professor Lirong Wang is a distinguished researcher at Soochow University, specializing in intelligent wearable devices and information processing. She earned her B.S. and Ph.D. from Jilin University and has been serving as a professor since 2014. Her research integrates microelectronics, machine learning, and biomedical engineering, with a strong focus on signal acquisition and analysis. Professor Wang leads several interdisciplinary projects and supervises graduate students, fostering innovation and academic growth. As the Principal Investigator of a National Key R&D Program, she demonstrates outstanding leadership in advancing cutting-edge technologies. She has authored over 40 peer-reviewed publications in prestigious journals such as IEEE Transactions on Biomedical Engineering and holds more than 20 invention patents, highlighting her contributions to both academic research and practical innovation. In addition to her research work, she actively participates in the global scientific community as a journal reviewer and organizer of international conference sessions in wearable technology and computer science.

Publication Profile

Education🎓

Professor Lirong Wang received her formal education at Jilin University, one of China’s premier institutions, where she earned both her Bachelor of Science (B.S.) and Doctor of Philosophy (Ph.D.) degrees. Her academic training focused on electronic engineering and information processing, laying a strong foundation for her specialization in intelligent wearable devices. Throughout her educational journey, she developed expertise in signal acquisition technologies, microelectronics, and data analysis, which later became the core pillars of her research. During her Ph.D. studies, Professor Wang engaged in interdisciplinary work that bridged engineering, computer science, and biomedical applications, positioning her at the forefront of next-generation health monitoring technologies. Her rigorous academic background and commitment to research excellence have equipped her with the analytical skills and innovative mindset needed to lead complex scientific projects. This strong educational grounding has played a pivotal role in shaping her successful academic and research career at Soochow University.

Professional Experience 💼

Professor Lirong Wang has built a robust professional career centered on interdisciplinary research and academic leadership. Since 2014, she has served as a professor at Soochow University, where she specializes in intelligent wearable devices, signal acquisition, and biomedical information processing. Her professional experience spans leading national-level R&D programs and supervising numerous graduate students, fostering innovation in both academia and applied technology. As the Principal Investigator of a National Key Research and Development Program, she has demonstrated exceptional capability in managing large-scale, collaborative research projects. Professor Wang has authored over 40 peer-reviewed publications and holds more than 20 invention patents, reflecting a strong commitment to both theoretical advancement and technological innovation. Beyond her university role, she contributes to the global research community as a reviewer for prestigious journals and an organizer of international conference sessions, particularly in wearable technology and computer science. Her experience reflects a deep integration of research, mentorship, and scientific engagement.

Research Interest 🔬

Professor Lirong Wang has a diverse and forward-thinking research portfolio centered on the development and application of intelligent wearable devices and biomedical information processing. Her primary interests lie in signal acquisition technology, physiological data analysis, and the integration of machine learning with microelectronic systems for real-time health monitoring and diagnostics. She is particularly focused on designing wearable platforms capable of accurately capturing and interpreting complex biological signals, such as ECG and EMG, to support early disease detection and personalized healthcare. Her interdisciplinary approach merges principles from biomedical engineering, computer science, and electrical engineering, creating practical solutions for next-generation health technologies. Additionally, she explores low-power sensor systems, data fusion algorithms, and human-computer interaction interfaces within wearable technologies. Professor Wang’s research aims to bridge the gap between theoretical modeling and real-world applications, ultimately enhancing the reliability and usability of wearable systems in clinical, athletic, and daily life settings.

Research Skill🔎

Professor Lirong Wang possesses a comprehensive set of research skills that reflect her expertise in intelligent wearable technology, biomedical engineering, and data-driven signal processing. She is highly skilled in designing and developing advanced wearable systems, with a strong command of microelectronic circuit design, sensor integration, and embedded system programming. Her proficiency in signal acquisition and processing allows her to extract meaningful insights from complex physiological data such as ECG, EMG, and PPG. She is also adept at applying machine learning algorithms for pattern recognition, anomaly detection, and predictive modeling in healthcare applications. In addition, she demonstrates expertise in managing interdisciplinary research teams, coordinating large-scale projects, and supervising graduate-level research. Professor Wang is experienced in securing research funding, particularly as a Principal Investigator on national R&D initiatives. Her ability to bridge theoretical knowledge with practical innovation highlights her strong analytical, experimental, and collaborative research capabilities across multiple scientific domains.

Award and Honor🏆

Professor Lirong Wang has received several prestigious awards and honors in recognition of her outstanding contributions to research and innovation in the fields of intelligent wearable devices and biomedical engineering. As the Principal Investigator of a National Key R&D Program, she has been recognized at the national level for her leadership and scientific excellence. Her pioneering work has earned accolades from academic institutions and government agencies, including awards for Technological Innovation and Excellence in Research. She has also been honored for her contributions to patent development, with over 20 invention patents credited to her name, many of which have led to real-world applications. Professor Wang’s high-impact publications in leading journals such as IEEE Transactions on Biomedical Engineering have further contributed to her reputation as a top researcher. Additionally, she has received invitations to serve as a reviewer and session chair at international conferences, reflecting her respected status in the global scientific community.

Conclusion📝

Professor Lirong Wang is highly suitable for the Best Researcher Award. His sustained contributions to interdisciplinary research, innovation through patents, and leadership in national research programs mark him as a leading figure in the field of intelligent wearable devices and biomedical engineering. With some enhancement in international collaboration and outreach, his profile stands as exemplary in both academic and practical domains.

Publications Top Noted📚

  • End-to-End ECG Signal Compression Based on Temporal Information and Residual Compensation

    • Year: 2025

    • Journal: Circuits, Systems, and Signal Processing

  • QRS Wave Detection Algorithm of Dynamic ECG Signal Based on Improved U-Net Network

    • Year: 2025

    • Journal: ICIC Express Letters, Part B: Applications

  • TrCL-AGS: A Universal Sequential Triple-Stage Contrastive Learning Framework for Bacterial Detection With Across-Growth-Stage Information

    • Year: 2025

    • Journal: IEEE Internet of Things Journal

  • Multi-label Few-Shot Classification of Abnormal ECG Signals Using Metric Learning

    • Year: 2025

    • Journal: Circuits, Systems, and Signal Processing

  • Automated Deep Learning Model for Sperm Head Segmentation, Pose Correction, and Classification (Open Access)

    • Year: 2024

    • Journal: Applied Sciences (Switzerland)

  • Instance Segmentation of Mouse Brain Scanning Electron Microscopy Images Based on Fine-Tuning Nature Image Model

    • Year: 2024

    • Journal: Guangxue Jingmi Gongcheng / Optics and Precision Engineering

    • Citations: 1

  • Multi-label Classification of Arrhythmia Using Dynamic Graph Convolutional Network Based on Encoder-Decoder Framework

    • Year: 2024

    • Journal: Biomedical Signal Processing and Control

    • Citations: 4

  • Two-Stage Error Detection to Improve Electron Microscopy Image Mosaicking

    • Year: 2024

    • Journal: Computers in Biology and Medicine

    • Citations: 2