Dr. Ehsan Adibnia | Computer Science | Editorial Board Member
University of Sistan and Baluchestan | Iran
Dr. Ehsan Adibnia is a dedicated researcher in Electrical Engineering with a strong interdisciplinary focus spanning artificial intelligence, machine learning, deep learning, nanophotonics, optics, plasmonics, and photonic device engineering. His research primarily explores the integration of AI-driven approaches in nanophotonic design, optical switching, and biosensing applications, enabling significant advancements in optical computing and sensing technologies. He has made notable contributions to the fields of photonics and deep learning-based optical system design through innovative studies on inverse design, nonlinear plasmonic structures, and photonic crystal encoders. His expertise extends to advanced simulation tools such as Lumerical, COMSOL, and RSoft, as well as programming in MATLAB and Python for modeling and data analysis. Dr. Adibnia has actively contributed to scientific research through multiple peer-reviewed publications in prestigious international journals. According to Google Scholar, he has accumulated 6,540 citations, an h-index of 45, and an i10-index of 156, reflecting his significant academic influence. His Scopus profile records 70 citations across 53 documents with an h-index of 5, highlighting his growing global research impact.
Profiles
Scopus | ORCID | Google Scholar
Featured Publications
Adibnia, E., Mansouri-Birjandi, M. A., & Ghadrdan, M. (2024). A deep learning method for empirical spectral prediction and inverse design of all-optical nonlinear plasmonic ring resonator switches. Scientific Reports, 14, 5787.
Adibnia, E., Ghadrdan, M., & Mansouri-Birjandi, M. A. (2024). Nanophotonic structure inverse design for switching application using deep learning. Scientific Reports, 14, 21094.
Adibnia, E., Ghadrdan, M., & Mansouri-Birjandi, M. A. (2025). Chirped apodized fiber Bragg gratings inverse design via deep learning. Optics & Laser Technology, 181, 111766.
Jafari, B., Gholizadeh, E., Jafari, B., & Adibnia, E. (2023). Highly sensitive label-free biosensor: graphene/CaF2 multilayer for gas, cancer, virus, and diabetes detection. Scientific Reports, 13, 16184.
Soroosh, M., Al-Shammri, F. K., Maleki, M. J., Balaji, V. R., & Adibnia, E. (2025). A compact and fast resonant cavity-based encoder in photonic crystal platform. Crystals, 15, 24.