Mr. Pingjie Ou | artificial intelligence | Best Researcher Award

Mr. Pingjie Ou | artificial intelligence | Best Researcher Award

Student, Guangxi University, China

Pingjie Ou is a passionate master’s student at Guangxi University, China, specializing in edge computing, cloud computing, and machine learning. With a strong academic foundation and growing research portfolio, he is actively contributing to next-generation computing paradigms. His early contributions in deep reinforcement learning applications for vehicular networks have already gained traction within the academic community. πŸ§ πŸ’‘

Professional Profile

Scopus

πŸŽ“ Education Background

Pingjie Ou is currently pursuing his master’s degree at Guangxi University, one of the prominent institutions in China. His academic focus lies in electrical and computer engineering, with emphasis on distributed computing and artificial intelligence. πŸ“˜πŸ«

πŸ’Ό Professional Experience

Although a student, Pingjie Ou has engaged in substantial research activities under funded projects including The National Natural Science Foundation of China (No. 62162003) and GuikeZY24212059 supported by the Guangxi Province. His active involvement in real-time research scenarios demonstrates promising professional potential. πŸ”¬πŸ“Š

πŸ… Awards and Honors

As an emerging scholar, Pingjie Ou has not yet accumulated major awards but has gained recognition through impactful publications and research citations. His growing citation record and h-index reflect the potential for future accolades. πŸ†πŸ“ˆ

πŸ” Research Focus

His core research interests include edge computing, cloud computing, vehicular networks, and machine learning. He is particularly focused on cooperative caching, resource management, and optimizing network efficiency using artificial intelligence approaches such as deep reinforcement learning. πŸš—β˜οΈπŸ“Ά

🧾 Conclusion

Pingjie Ou is a driven young researcher dedicated to advancing intelligent computing technologies. With strong academic grounding, collaborative research exposure, and early citation impact, he stands as a promising candidate for recognition in the domain of computer science and engineering. His scholarly journey is on a clear upward trajectory. πŸš€πŸ“š

πŸ“š Publication Top Note

  1. PDRL-CM: An efficient cooperative caching management method for vehicular networks based on deep reinforcement learning
    πŸ“… Published Year: 2025
    πŸ“– Journal: Ad Hoc Networks
    πŸ”— 10.1016/j.adhoc.2025.103888

 

Mr. Lurui Wang | Machine Learning | Best Researcher Award

Mr. Lurui Wang | Machine Learning | Best Researcher Award

Mr. Lurui Wang, Univeristy of toronto Mind lab, Canada.

Lurui Wang is a passionate and innovative researcher in the field of mechanical engineering, with a strong interdisciplinary interest in robotics, artificial intelligence, and sensor technologies. Currently pursuing his Bachelor of Science in Mechanical Engineering at the University of Toronto, he combines practical experience, academic excellence, and a drive for impactful innovation. With an impressive GPA of 3.75 and extensive involvement in machine learning and design projects, Lurui has contributed to multiple high-impact research areas such as cold spray coatings, aerosol systems for medical applications, and intelligent object detection models. His leadership skills are evident through various team-led design and AI projects, as well as his industry internship with Baylis Med Tech, where he made significant technical contributions.

Professional Profile

ORCID

πŸŽ“ Education Background

Lurui Wang began his academic journey at the University of Toronto in September 2020 and is expected to graduate in April 2025 with a Bachelor of Science in Mechanical Engineering. His curriculum includes key subjects such as Mechanical Engineering Design, Mechatronics, Fluid Mechanics, and Solid Mechanics, enhanced by the Professional Experience Year (PEY Co-op). He also undertook summer courses at Xiamen University in accounting, microeconomics, and macroeconomics, reflecting his interdisciplinary interests.

πŸ’Ό Professional Experience

Lurui’s hands-on experience spans several high-impact projects and internships. He has been involved in developing deep learning models for acoustic emission sensor data in cold spray coatings, advanced object detection through SparseNetYOLOv8, and designing heater systems for aerosol deposition studies. Notably, at Baylis Med Tech, he served as an Equipment Engineer, leading the design of a cable coiling machine, improving manufacturing efficiency, and reducing operational costs. He has also led student design projects in robotics, AI traffic signal detection, and mechanical systems such as gearboxes and milling machines, showcasing his engineering versatility.

πŸ† Awards and Honors

Lurui Wang’s dedication has been recognized through multiple accolades, including the Certified SolidWorks Professional (CSWP) in 2022 and Associate (CSWA) in 2021. In 2024, he earned a Kaggle Silver Medal in the “Eedi – Mining Misconceptions in Mathematics” competition, ranking among the top 67 out of 1,446 participants, underscoring his strong data science capabilities.

πŸ”¬ Research Focus

Lurui’s research focuses on the intersection of mechanical systems, intelligent computation, and biomimicry. His works explore robotic optimization using insect-inspired mechanisms, machine learning integration in engineering systems, sensor fusion for predictive manufacturing, and vision-based detection models using YOLO architecture enhancements. His projects aim to address real-world challenges in autonomous systems, medical technology, and intelligent manufacturing, driven by simulation tools, programming, and algorithmic innovation.

πŸ”š Conclusion

Lurui Wang stands out as a dynamic and driven early-career researcher, blending engineering design, data science, and real-world application with academic rigor. His proactive approach, technical skillset, and collaborative mindset mark him as a rising talent in the fields of intelligent mechanical systems and applied machine learning.

πŸ“š Top Publications with Notes

  1. Design and Optimization of Monopod Robots for Continuous Vertical Jumping: A Novel Hopping Mechanism Inspired by Froghoppers and Grasshoppers
    • Authors: Suhang Xu, Feihan Li, Lurui Wang, Yujing Fu

    • Published Year: 2024

    • Journal: Proceedings of MLPRAE 2024

    • DOI: 10.1145/3696687.3696695

  2. SparseNetYOLOv8: Integrating Vision Transformers and Dynamic Probing for Enhanced Sparse Object Detection
    • Authors: Lurui Wang, Yanfeng Lyu

    • Published Year: 2024

    • Conference: 2024 International Conference on Computer Vision and Image Processing (CVIP 2024)

    • DOI: 10.1117/12.3058039

  3. A Machine Learning Approach for Predicting Particle Spatial, Velocity, and Temperature Distributions in Cold Spray Additive Manufacturing
    • Authors: Lurui Wang, Mehdi Jadidi, Ali Dolatabadi

    • Published Year: 2025

    • Conference: Applied Sciences

    • DOI: 10.3390/app15126418

Ms. ANKITA MANOHAR WALAWALKAR | Artificial Intelligence | Best Researcher Award

Ms. ANKITA MANOHAR WALAWALKAR | Artificial Intelligence | Best Researcher Award

PhD, ASIA UNIVERSITY, TAIWAN

Ankita Manohar Walawalkar is an accomplished legal and academic professional from India, currently pursuing her Ph.D. in Business Administration at Asia University, Taiwan, with a strong focus on Artificial Intelligence, Corporate Governance, Human Resource Management, and Supply Chain. With a unique blend of legal expertise and international business experience, Ankita has spent over two decades navigating corporate procurement, translation, teaching, and research. Fluent in English, Hindi, and Chinese, she bridges cultural and linguistic gaps, making her a versatile contributor in academia and international business diplomacy. Her academic versatility, fieldwork experience, and multilingual proficiency make her a standout scholar and practitioner on global platforms.

Publication Profile

πŸŽ“ Education Background

Ankita is presently enrolled in a Ph.D. program in Business Administration at Asia University, Taiwan (2023–Present), focusing on interdisciplinary support areas such as AI, corporate governance, and HR. She holds a Master of Laws (LL.M.) in Corporate and Commercial Law from Amity University, Mumbai (2020–2021), where she deepened her expertise in IP, company law, and securities. Her foundational legal education was completed with a BLS-LLB from KES Jayantilal H. Patel Law College, University of Mumbai (2014–2020). Additionally, she completed a one-year Chinese Language Training at Zhengzhou University, China (2017–2018) under the prestigious Confucius Institute Scholarship.

πŸ’Ό Professional Experience

Ankita’s dynamic professional career spans corporate sourcing and academia. From 2021 to 2023, she worked as a Sourcing Specialist at Algol Chemicals India Pvt. Ltd., New Delhi, specializing in Chinese supplier coordination, procurement, and logistics compliance. She has over five years of experience as a Freelance Interpreter and Translator, working with companies like VOXCO Pigments, Podar Enterprise, and Kohinoor Group, and participating in over 15 international exhibitions and conferences including the China-India Economic and Trade Conference. At Asia University, she serves as an EMI Teaching Assistant, TA for the Rural AI Bilingual Program, and works with the IC OIA office while volunteering at the INGO Research Centre. Her freelance work includes judicial interpretations, educational instruction for YCT/HSK levels, and market research projects for global clients.

πŸ† Awards and Honors

Ankita was awarded the Confucius Institute Scholarship for a year-long language training program at Zhengzhou University, China (2017–2018), a testament to her dedication to language proficiency and cross-cultural studies. Her consistent participation in high-impact conferences and scholarly publications with global collaborators is a reflection of her ongoing academic recognition.

πŸ”¬ Research Focus

Ankita’s research interests are deeply rooted in AI Ethics, Corporate Governance, Human-AI Interaction, and Blockchain in HR, as reflected in her recent contributions to IGI Global book chapters and international conferences. She is actively involved in interdisciplinary explorations, combining law, ethics, and technology, with a notable focus on Human-AI collaboration in corporate decision-making, DEI challenges in hospital management, and the use of AI in education and language preservation.

πŸ“Œ Conclusion

Ankita Manohar WalawalkarΒ  stands at the unique intersection of law, language, and artificial intelligence, bringing over 20 years of diverse administrative, academic, and international experience to her work. Her contributions across education, corporate sourcing, and AI ethics research demonstrate her commitment to global impact and ethical innovation. As she continues her doctoral journey, her voice in the field of AI governance and multilingual education is becoming increasingly influential.

πŸ“ Top Publication Notes

  1. Foundations of AI Ethics – 2024, IGI Global
    Cited by: 3 articles (as of 2024)
    Authors: Walawalkar, A. M., Moslehpour, M., Phattanaviroj, T., & Kumar, S.

  2. Utilization of Blockchain Technology to Manage Human Resources Data: Security Issues in Government Agencies – 2024, IGI Global
    Cited by: 2 articles
    Authors: Yati, P. P., & Walawalkar, A.

  3. Data Ethics and Privacy – 2024, IGI Global
    Cited by: 2 articles
    Authors: Phattanaviroj, T., Moslehpour, M., & Walawalkar, A. M.

  4. The Future of Ethical AI – 2024, IGI Global
    Cited by: 3 articles
    Authors: Firmansyah, G., Bansal, S., Walawalkar, A. M., Kumar, S., & Chattopadhyay, S.

  5. Investigating Human-AI Collaboration in Corporate Decision-Making for Sustainable Business Practices: An Extended UTAUT2 Model – 2025 (Upcoming), ICHESPAN Conference
    Status: Accepted, not yet cited
    Authors: Walawalkar, A. M., Moslehpour, M., Gupta, V., Rizaldy, H.

Assist. Prof. Dr. Joaquim Casaca | Artificial Intelligence | Best Researcher Award

Assist. Prof. Dr. Joaquim Casaca | Artificial Intelligence | Best Researcher Award

Prof, IADE, European University, Portugal

Joaquim AntΓ³nio A. Casaca is an accomplished academic and professional in management, specializing in information security and marketing. He currently serves as an Assistant Professor at IADE, European University, Lisbon. Known for his expertise in management and economics, Joaquim has contributed extensively to research in areas such as entrepreneurial competence, marketing, and information security.

Publication Profile

Scopus

ORCID

πŸŽ“ Education Background

Joaquim Casaca holds a PhD in Management (2010) from Universidade LusΓ­ada de Lisboa, with a thesis focusing on information security management in Portuguese SMEs. He earned a Master’s in Management (1999) and an MBA (1997) from ISEG – Lisbon School of Economics and Management, University of Lisbon. Additionally, he completed a Postgraduate degree in Information Sciences and Technologies for Organizations (1996) from ISEG, and holds a BSc in Economics (1982) from the same institution.

πŸ’Ό Professional Experience

Since 2010, Joaquim has been an Assistant Professor at IADE, European University (Lisbon). Previously, he held academic roles at the University of Lisbon and LusΓ³fona University, and financial positions in notable companies such as PT MultimΓ©dia, Portugal Telecom, and Companhia Portuguesa RΓ‘dio Marconi. His broad experience spans academia, finance, and management consultancy.

πŸ† Awards and Honors

Joaquim received the Banco EspΓ­rito Santo Award in 1999 at ISEG for his outstanding Master’s thesis. This recognition highlights his early excellence and research capability in management.

πŸ” Research Focus

His research interests center on management, information security, entrepreneurial competence, and marketing. Recent work includes studies on game-based learning’s effect on entrepreneurial skills and the role of neuroscience in economics and marketing. Joaquim’s interdisciplinary approach integrates management theory with emerging technologies and consumer behavior.

πŸ”š Conclusion

With a strong academic foundation and a versatile professional background, Joaquim A. Casaca is a respected figure in management and information security education. His ongoing contributions advance the understanding of how technology and management intersect in organizational contexts.

πŸ“š Top Publications

  • The effect of game-based learning on the development of entrepreneurial competence among higher education students
    Daniel, A. D., Negre, Y., Casaca, J. A., Patricio, R., & Tsvetcoff, R. (2024). Education + Training.
    DOI: 10.1108/ET-10-2023-0448 β€” Cited by 3 articles

  • Neuroscience Applied to Economics and Marketing: A bibliometric Review of the Literature
    Casaca, J. A. (2024). International Journal of Business Innovation and Research.
    DOI: 10.1504/ijbir.2024.10066189

  • The determinants of non-consumption of disposable plastic: application of an extended theory of planned behaviour
    Casaca, J. A. (2024). International Journal of Business Environment.
    DOI: 10.1504/IJBE.2024.135693

  • Relational Marketing and Customer Satisfaction: A Systematic Literature Review
    Casaca, J. A. (2023). Estudios Gerenciales.
    DOI: 10.18046/j.estger.2023.169.6218

  • Relationship Marketing and Customer Retention – A Systematic Literature Review
    Casaca, J. A. (2023). Studies in Business and Economics.
    DOI: 10.2478/sbe-2023-0044

 

Dr. Keyong Hu | artificial intelligence | Best Researcher Award

Dr. Keyong Hu | artificial intelligence | Best Researcher Award

Teacher, Hangzhou Normal University, China

Dr. KeYong Hu is an accomplished academic and researcher specializing in artificial intelligence and new energy technology. He earned his Ph.D. from the Zhejiang University of Technology in 2016 and is currently serving as an Associate Professor at Hangzhou Normal University, within the School of Information Science and Technology. Dr. Hu has contributed significantly to the intersection of AI and energy systems, with numerous publications in international journals, showcasing his expertise in predictive modeling and intelligent optimization.

Publication Profile

ORCID

πŸŽ“ Education Background

Dr. KeYong Hu completed his doctoral studies at the Zhejiang University of Technology, Hangzhou, China, where he received his Ph.D. in 2016. His academic training laid a strong foundation in computational intelligence and energy-related engineering applications.

πŸ’Ό Professional Experience

Dr. Hu holds the position of Associate Professor at Hangzhou Normal University, Hangzhou, Zhejiang, China, affiliated with the School of Information Science and Technology. He has been actively involved in teaching, mentoring, and high-impact research since earning his doctorate.

πŸ† Awards and Honors

While specific awards are not listed, Dr. Hu’s prolific publishing record in top-tier peer-reviewed journals like Mathematics, Heliyon, Sustainability, and Computers and Electrical Engineering underscores his recognition and influence in the fields of AI and energy optimization.

πŸ”¬ Research Focus

Dr. Hu’s research centers on the integration of artificial intelligence with new energy technologies, particularly photovoltaic power forecasting, energy system optimization, and cross-modal data analysis. His innovative use of algorithms such as Copula functions, Transformers, and Dung Beetle Optimization showcases his depth in AI-driven energy analytics.

βœ… Conclusion

Dr. KeYong Hu stands out as a forward-thinking researcher contributing impactful work at the intersection of artificial intelligence and sustainable energy. Through his academic leadership and research contributions, he continues to shape the future of intelligent energy systems in China and beyond. πŸŒπŸ“ˆ

πŸ“š Top PublicationsΒ 

πŸ”— Two-Stage Distributionally Robust Optimal Scheduling for Integrated Energy Systems Considering Uncertainties in Renewable Generation and Loads
Journal: Mathematics | Year: 2025
Cited by: Check on Google Scholar

πŸ”— Short-term Photovoltaic Forecasting Model with Parallel Multi-Channel Optimization Based on Improved Dung Beetle Algorithm
Journal: Heliyon | Year: 2024
Cited by: Check on Google Scholar

πŸ”— Distributed Regional Photovoltaic Power Prediction Based on Stack Integration Algorithm
Journal: Mathematics | Year: 2024
Cited by: Check on Google Scholar

πŸ”— Automatic Depression Prediction via Cross-Modal Attention-Based Multi-Modal Fusion in Social Networks
Journal: Computers and Electrical Engineering | Year: 2024
Cited by: Check on Google Scholar

πŸ”— Short-Term Photovoltaic Power Generation Prediction Based on Copula Function and CNN-CosAttention-Transformer
Journal: Sustainability | Year: 2024
Cited by: Check on Google Scholar

Prof. Dr. Hamid Arabnia | Data Science | Best Researcher Award

Prof. Dr. Hamid Arabnia | Data Science | Best Researcher Award

Professor Emeritus, University of Georgia, United States

Dr. Hamid R. Arabnia is a distinguished Professor Emeritus of Computer Science at the University of Georgia, USA πŸŽ“. With a Ph.D. in Computer Science from the University of Kent, England (1987), he has made substantial contributions to the fields of Artificial Intelligence, Data Science, Machine Learning, HPC, and STEM education πŸ€–πŸ“Š. Over his career, he has mentored 23 Ph.D. students and played a vital role in advancing computational science and intelligence. He has been an active advocate against cyber-harassment and cyberbullying, winning a landmark lawsuit in 2017–2018, securing a $3 million ruling βš–οΈ. Prof. Arabnia has an extensive publication record with 300+ peer-reviewed papers and 200+ edited research books, establishing himself among the top 2% most impactful scientists, as recognized by Stanford University πŸŒπŸ“š.

Publication Profile

πŸŽ“ Education

Dr. Arabnia earned his Ph.D. in Computer Science from the University of Kent, England (1987) πŸ›οΈ. His research during his doctoral studies laid the foundation for his pioneering contributions in supercomputing and artificial intelligence πŸ€–πŸ’‘.

πŸ’Ό Experience

Dr. Arabnia has been with the University of Georgia since 1987, contributing as a Professor, Graduate Coordinator, and Research Director 🏫. He has served as Editor-in-Chief of The Journal of Supercomputing (Springer) and is the book series editor for Transactions of Computational Science and Computational Intelligence (Springer) πŸ“–. His leadership has also extended to roles as a senior adviser for global corporations and National Science Foundation (NSF) committees for over 10 years πŸ†.

πŸ… Awards and Honors

Prof. Arabnia has received numerous prestigious awards, including recognitions from IEEE BIBE, ACM SIGAPP, and IMCOM πŸ…. His legal victory against cyber-harassment was a landmark case, setting an important precedent in the U.S. legal system βš–οΈ. His contributions to STEM education and securing $12 million in funding for graduate research at UGA have also been widely recognized πŸ’°πŸ“š.

πŸ”¬ Research Focus

Dr. Arabnia’s research spans Data Science, AI, HPC, Machine Learning, Imaging Science, and Compute-Intensive Problems πŸ€–πŸ“Š. He has been actively involved in cybersecurity legislation advocacy, focusing on cyberstalking and online harassment πŸ”’. His latest work integrates deep learning, upsampling techniques, and AI-driven smart city applications 🌍.

πŸ”š Conclusion

Dr. Hamid R. Arabnia is a highly influential researcher, educator, and advocate for ethical AI and cybersecurity πŸ†. With over 500 publications and millions in research funding, his contributions have shaped modern supercomputing, artificial intelligence, and digital security πŸ”¬. Recognized among the top 2% impactful scientists globally, his work continues to inspire the next generation of AI and computer science researchers πŸš€.

πŸ“š Publications

Comprehensive Analysis of Random Forest and XGBoost Performance with SMOTE, ADASYN, and GNUS Upsampling under Varying Imbalance LevelsΒ (2025) – Preprint

A New Efficient Hybrid Technique for Human Action Recognition Using 2D Conv-RBM and LSTM with Optimized Frame SelectionΒ (2025) – Technologies | DOI πŸ“‘

SWAG: A Novel Neural Network Architecture Leveraging Polynomial Activation Functions for Enhanced Deep Learning EfficiencyΒ (2024) – IEEE Access | DOI πŸ“–

Hyperparameter Optimization and Combined Data Sampling Techniques in Machine Learning for Customer Churn Prediction: A Comparative AnalysisΒ (2023) – Technologies | DOI πŸ“œ

A Review of Deep Transfer Learning and Recent AdvancementsΒ (2023) – Technologies | DOI πŸ“˜

Embodied AI-Driven Operation of Smart Cities: A Concise ReviewΒ (2021) – TechRxiv | DOI 🌍

Huan Zhao | Machine Learning | Best Researcher Award

Assoc. Prof. Dr . Huan Zhao | Machine Learning | Best Researcher Award

Associate Professor, School of Aeronautics, Northwestern Polytechnical University, China

Huan Zhao is an associate professor at the School of Aeronautics, Northwestern Polytechnical University (NPU), China. He specializes in aerodynamics, multidisciplinary design optimization, uncertainty quantification, and machine learning, focusing on CFD simulation, AI-based global optimization, and surrogate modeling. He is also the executive deputy director of the Institute of Digital Intelligence for Flight Mechanics and Aerodynamic Design (IDIFMAD). Zhao has made significant contributions to the fields of aerodynamic shape optimization, high-dimensional global optimization, and uncertainty-based robust design. He holds several patents and has authored many high-impact publications. 🌐✈️

Publication Profile

Education

Huan Zhao completed his Ph.D. in Fluid Dynamics at Northwestern Polytechnical University (NPU) in 2020, following a B.Eng. in Aircraft Design and Engineering from the same university in 2014. πŸ“šπŸŽ“

Experience

Zhao served as a tenure-track assistant professor at Sun Yat-sen University (SYSU) before joining NPU as a tenure-track associate professor in 2023. He has directed and participated in numerous research projects focusing on aerodynamic design optimization, high-speed rotor airfoil design, and surrogate-assisted design techniques. He is a principal investigator (PI) for multiple projects funded by the National Natural Science Foundation of China (NSFC). πŸ‘¨β€πŸ«πŸ”¬

Awards and Honors

Huan Zhao has received several awards and honors, including recognition as part of the β€œHundred Talents Plan” Young Academic Backbone at SYSU and multiple patents for his innovative contributions to aerodynamic design. πŸ†πŸŽ–οΈ

Research Focus

Zhao’s research interests lie in aerodynamics, including multi-fidelity polynomial chaos-Kriging models, aerodynamic shape optimization, and uncertainty quantification. His work has contributed significantly to the design and optimization of high-lift airfoils, laminar flow airfoils, and robust design methods under uncertainty. His expertise also includes machine learning, AI-based global optimization, and the application of surrogate models in complex design scenarios. πŸ”πŸ§‘β€πŸ’»

Conclusion

Huan Zhao’s innovative work has had a profound impact on the field of aerodynamics and optimization. His research has not only advanced the understanding of aerodynamic design but has also led to practical improvements in the development of high-performance aircraft and related technologies. He continues to drive forward cutting-edge research in aerodynamics and multidisciplinary design optimization. πŸš€πŸŒ

Publications

An efficient adaptive forward–backward selection method for sparse polynomial chaos expansion, Computer Methods in Applied Mechanics and Engineering, 2019.

Review of robust aerodynamic design optimization for air vehicles, Archives of Computational Methods in Engineering, 2019.

Effective robust design of high lift NLF airfoil under multi-parameter uncertainty, Aerospace Science and Technology, 2017.

Adaptive multi-fidelity sparse polynomial chaos-Kriging metamodeling for global approximation of aerodynamic data, Structural and Multidisciplinary Optimization, 2021.

Uncertainty-based design optimization of NLF airfoil for high altitude long endurance unmanned air vehicles, Engineering Computations, 2019.

Β Efficient aerodynamic analysis and optimization under uncertainty using multi-fidelity polynomial chaos-Kriging surrogate model, Computers & Fluids, 2022.

Research on efficient robust aerodynamic design optimization method of high-speed and high-lift NLF airfoil, Acta Aeronautica et Astronautica Sinica, 2021.

Research on Novel High-Dimensional Surrogate Model-Based Aerodynamic Shape Design Optimization, Acta Aeronautica et Astronautica Sinica, 2022.

Research on novel multi-fidelity surrogate model assisted many-objective global optimization method, Acta Aeronautica et Astronautica Sinica, 2022.

Adaptive multi-fidelity polynomial chaos-Kriging model-based efficient aerodynamic design optimization method, Chinese Journal of Theoretical and Applied Mechanics, 2023.

 

Lukas Petersson | Artificial Intelligence | Best Researcher Award

Mr. Lukas Petersson | Artificial Intelligence | Best Researcher Award

Founder, Vectorview, United States

Lukas Petersson is a passionate AI and robotics researcher, currently serving as the CTO and Co-founder of Vectorview in San Francisco. With a strong background in software engineering, machine learning, and robotics, Lukas has contributed significantly to AI safety evaluations for major labs such as Anthropic. He has a track record of successful funding, securing $2.2M in capital, and conducting groundbreaking research on agentic capabilities of LLMs. πŸŒŸπŸ€–πŸ’‘

Publication Profile

Google Scholar

Education:

Lukas is pursuing his M.Sc. and B.Sc. in Engineering Physics and Engineering Mathematics at Lund University, where he has achieved an impressive GPA of 4.9/5 and 5.0/5. He also spent a year at ETH Zurich focusing on Machine Learning and Robotics. πŸŽ“πŸ“š

Experience:

Lukas has gathered diverse experience across top organizations such as Google, Disney Research, CommaAI, and the European Space Agency. He has contributed to AI research, robotics, and autonomy engineering, with notable achievements like developing RL algorithms for social robotic interaction and automating data analysis at Google. He has also been part of impactful projects like the viral robot developed at Disney Research. πŸ’πŸ§‘β€πŸ’»πŸš€

Research Interests:

Lukas’s research interests lie at the intersection of AI Safety, Machine Learning, Robotics, and Autonomous Systems. His work focuses on improving agentic capabilities of large language models (LLMs) and exploring the application of Reinforcement Learning (RL) for social robots. πŸ€–πŸ”¬πŸŒ

Awards:

Lukas’s work has been recognized in the fields of robotics and AI, contributing to significant advancements in safety and performance. He has excelled in competitive programming and autonomous vehicle development, receiving awards and recognition for his innovative approach to solving real-world challenges. πŸ†πŸŒŸ

Publications:

“Taming the Machine” (2023): Contributed research on AI Safety for a book discussing the future of machine learning and its societal impacts. πŸ“šπŸ§ 

“MBSE” (2021): Published and presented a paper on Model-Based Systems Engineering at a conference, focusing on advanced methodologies in systems engineering. πŸ“„πŸ”§