Zeshan Khan | Artificial Intelligence| Best Researcher Award

Assoc. Prof. Dr. Zeshan Khan |Artificial Intelligence| Best Researcher Award

Associate Professor, National Yunlin University of Science and Technology, Taiwan

Dr. Zeshan Aslam Khan is an esteemed Associate Professor at the International Graduate School of Artificial Intelligence, National Yunlin University of Engineering Sciences and Technology. With a strong background in Artificial Intelligence, Image Analysis, and Recommender Systems, he has made significant contributions to academia and industry. As the Director of the PRISM Lab, he actively supervises cutting-edge AI research, fostering innovation in Smart Metering, Fingerprint Recognition, and Alzheimer’s Detection. His work is recognized globally, with prestigious awards, high-impact publications, and collaborations with leading research institutions in the UK, Ireland, Taiwan, and Pakistan. 🌍📚

Publication Profile

Scopus

🎓 Education

Dr. Khan holds a Ph.D. in Electronic Engineering (2020) with a specialization in Learning Machines for Recommender Systems. His academic journey includes an M.Sc. in Computer Systems Engineering from Halmstad University, Sweden (2010), and a B.Sc. in Computer Information Systems Engineering from UET Peshawar, Pakistan (2005). His extensive educational background has laid a strong foundation for his expertise in AI-driven systems and computational intelligence. 🎓🔬

💼 Experience

With over a decade of experience, Dr. Khan has established himself as a leading researcher and educator in Artificial Intelligence. He has served as a Visiting Researcher at the University of Birmingham (UK) and the University of Galway (Ireland). His industry collaborations include partnerships with the National Radio Telecommunication Corporation (NRTC), Pakistan, and the Future Technology Research Center, Taiwan. As an Associate Editor of the Journal of Innovative Technologies (JIT) and a reviewer for top-tier journals like IEEE Transactions on AI, he plays a crucial role in shaping AI research globally. 🌟🔍

🏆 Awards and Honors

Dr. Khan’s excellence in research and academia has been recognized through numerous accolades. He was awarded the prestigious Ph.D. Gold Medal (2020) and the Faculty Research Brilliance Award (2022). In 2023, he received the Productive Researcher Award for his outstanding publications and graduate supervisions. His work has also secured significant research grants, including the Pakistan Engineering Council (PEC) Grant and the Higher Education Commission (HEC) Grant, enabling advancements in AI and IoT applications. 🏅🔬

🔬 Research Focus

Dr. Khan’s research revolves around Artificial Intelligence, Image Classification/Segmentation, Recommender Systems, Embedded Systems, and Fractional Calculus. His groundbreaking work in explainable AI, fractional optimization, and chaotic heuristics has been widely published in high-impact Q1 journals. His innovative contributions include developing AI-powered solutions for healthcare, smart metering, and signature verification, bridging the gap between academia and industry through real-world applications. 🤖📈

📝 Conclusion

Dr. Zeshan Aslam Khan stands as a prominent figure in the field of Artificial Intelligence, with a profound impact on research, education, and industry collaborations. His dedication to AI-driven solutions, student mentorship, and high-impact publications solidifies his reputation as a leader in predictive intelligence and systems modeling. With a global research footprint and numerous accolades, he continues to drive technological advancements that shape the future of AI. 🌍🚀

📚 Publications 

Generalized fractional optimization-based explainable lightweight CNN model for malaria disease classificationComputers in Biology and Medicine, 2025 (Q1, IF: 7.0) [Link] 📖🔬

Fractional Gradient Optimized Explainable CNN for Alzheimer’s Disease DiagnosisHeliyon, 2024 (Q1, IF: 3.4) [Link] 🧠📊

Design of chaotic Young’s double slit experiment optimization heuristics for nonlinear muscle model identificationChaos, Solitons & Fractals, 2024 (Q1, IF: 5.3) [Link] 🎯💡

A gazelle optimization expedition for key term separated fractional nonlinear systems applied to muscle modelingChaos, Solitons & Fractals, 2024 (Q1, IF: 5.3) [Link] 📉⚙️

Generalized fractional strategy for recommender systems with chaotic ratings behaviorChaos, Solitons & Fractals, 2022 (Q1, IF: 5.3) [Link] ⭐🔍

Lianbo Ma | Artificial Intelligence | Best Researcher Award

Prof. Lianbo Ma | Artificial Intelligence | Best Researcher Award

Professor, Northeastern University, China

Dr. Lianbo Ma is a distinguished professor at Northeastern University, China, with expertise in computational intelligence, machine learning optimization, big data analysis, and natural language processing. With a Ph.D. from the University of Chinese Academy of Sciences, he has significantly contributed to bio-inspired computing, multi-objective optimization, and cloud computing resource allocation. As a prolific researcher, Dr. Ma has published over 90 papers in high-impact journals and conferences, earning global recognition for his work. His research has been widely cited, and he has received numerous prestigious awards, making him a key figure in artificial intelligence and optimization.

Publication Profile

Google Scholar

🎓 Education

Dr. Ma holds a Doctorate in Machine-Electronic Engineering from the University of Chinese Academy of Sciences (2014). He earned his Master’s degree (2007) and Bachelor’s degree (2004) in Information Science and Engineering from Northeastern University, China. His academic journey has provided a solid foundation in AI-driven optimization, neural networks, and computational intelligence.

💼 Experience

Dr. Ma has held various esteemed positions in academia and research institutions. Since 2017, he has been a professor at Northeastern University, China, specializing in software engineering and AI. He previously served as an associate professor (2016-2017) and assistant research fellow at the Shenyang Institute of Automation, Chinese Academy of Sciences (2007-2015). His international experience includes a visiting scholar position at Surrey University, UK (2019-2020), under the mentorship of Prof. Yaochu Jin. His extensive professional journey highlights his contributions to AI-driven industrial applications and large-scale optimization.

🏆 Awards and Honors

Dr. Ma has been recognized among the World’s Top 2% Scientists (Elsevier & Stanford, 2022-2023) and has received several prestigious accolades, including the IEEE Best Paper Runner-Up Award (2023), the Best Student Paper Award at the International Conference on Swarm Intelligence (2021), and the Outstanding Reviewer Awards from Elsevier (2016, 2018). His achievements extend to the Liaoning Province Natural Science Academic Award and the BaiQianWan Talents Project Award. His dedication to research and mentorship is further evident in his recognition as an Excellent Master’s Thesis Instructor.

🔬 Research Focus

Dr. Ma’s research spans computational intelligence, large-scale multi-objective optimization, and bio-inspired computing. His expertise extends to cloud computing, edge computing, and social network analysis, where he has worked on cloud resource allocation and influence maximization. He is also actively engaged in multi-modal data processing, focusing on knowledge graphs, entity extraction, and text mining. His research integrates AI with industrial applications, advancing neural architecture search and intelligent data analysis.

🔍 Conclusion

Dr. Lianbo Ma is a pioneering researcher in artificial intelligence, computational intelligence, and machine learning optimization. His contributions to big data analytics, neural architecture search, and evolutionary computation have positioned him as a leading figure in the field. With numerous accolades, high-impact publications, and extensive academic service, Dr. Ma continues to shape the future of AI-driven optimization and intelligent computing. 🚀

📖 Publications

A Hybrid Neural Architecture Search Algorithm Optimized via Lifespan Particle Swarm Optimization for Coal Mine Image Recognition

Truthful Combinatorial Double Auctions for Mobile Edge Computing in Industrial IoT. IEEE Transactions on Mobile Computing, 21(11), 4125-4138. DOI

Single-Domain Generalized Predictor for Neural Architecture Search System. IEEE Transactions on Computers. DOI

One-Step Forward and Backtrack: Overcoming Zig-Zagging in Loss-Aware Quantization Training. AAAI-24 Conference Proceedings.

Pareto-wise Ranking Classifier for Multi-objective Evolutionary Neural Architecture Search. IEEE Transactions on Evolutionary Computation. DOI

An Adaptive Localized Decision Variable Analysis Approach to Large-Scale Multiobjective and Many-objective Optimization. IEEE Transactions on Cybernetics, 52(7), 6684-6696. DOI

Enhancing Learning Efficiency of Brain Storm Optimization via Orthogonal Learning Design. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 51(11), 6723-6742. DOI