Mr. Abir Das | Artificial Intelligence | Research Excellence Award

Mr. Abir Das | Artificial Intelligence | Research Excellence Award

Siliguri Government Polytechnic College | India

Abir Das is an emerging AI/ML researcher whose work spans deep learning, computer vision, medical imaging, and explainable AI. With a strong foundation in developing end-to-end AI systems, his research focuses on Vision Transformers, self-supervised learning, noisy-label correction, and interpretable models for high-stakes applications such as healthcare, EEG signal analysis, and industrial fault diagnosis. He has contributed as the first author to multiple international journals, working extensively on hybrid deep learning models, CLIP-based zero-shot learning, EEG motor imagery classification, and sensor-driven diagnostic pipelines. His research integrates expertise in PyTorch, TensorFlow, and modern transformer architectures, emphasizing human-centered, reliable, and transparent AI solutions. He has actively explored the intersection of computer vision and embedded systems, enhancing drone autonomy, depth estimation, and real-time object detection, while also contributing to speech technologies through accent-conversion and multimodal learning. His scientific output includes publications in reputable venues such as Scientific Reports, MDPI Sensors, and Computers, Materials & Continua. His growing scholarly impact is reflected in Scopus metrics: 11 citations from 11 documents with an h-index of 1, and Google Scholar metrics: 12 citations, h-index 1, i10-index 1. His work continues to advance practical and theoretically grounded AI methodologies, blending deep learning innovations with real-world applications across biomedical imaging, EEG analysis, and industrial AI systems.

Publication Profile

Scopus | Google Scholar

Featured Publications

Das, A., Singh, S., Kim, J., Ahanger, T. A., & Pisa, A. A. (2025). Enhanced EEG signal classification in brain computer interfaces using hybrid deep learning models. Scientific Reports, 15(1), 27161.

Zereen, A. N., Das, A., & Uddin, J. (2024). Machine fault diagnosis using audio sensor data and explainable AI techniques: LIME and SHAP. Computers, Materials & Continua, 80(3).

Das, S. S. A. (2025). Few-shot and zero-shot learning for MRI brain tumor classification using CLIP and Vision Transformers. Sensors, 25(23), 7341.

Mr. Pratik Thantharate | Artificial Intelligence | Editorial Board Member

Mr. Pratik Thantharate | Artificial Intelligence | Editorial Board Member

Paycor | United States

Pratik Thantharate is a distinguished researcher and Principal Software Engineer whose work spans Agile Software Development, Cybersecurity, DevOps, Cloud Computing, and Code-to-Cloud Security. With dual master’s degrees in Computer Science and Information Systems, he has established a strong research portfolio integrating automation, security, and large-scale distributed architectures. His expertise includes CI/CD pipelines, containerization, microservices, infrastructure as code, observability frameworks, and privacy-preserving systems for modern software ecosystems. Pratik has authored peer-reviewed publications, contributed book chapters, and published impactful research in prominent venues across Elsevier, IEEE, and MDPI. His innovations explore energy-efficient UAV optimization, federated learning for cybersecurity, Zero-Trust blockchain architectures, advanced observability mechanisms for DevOps, and heuristic genetic algorithms for automated vulnerability detection. He has also contributed two patents focused on intelligent monitoring and advanced security analytics for DevSecOps environments. In addition to his research outputs, Pratik has served on numerous technical program committees and peer-reviewed over a hundred scholarly articles across international conferences and journals. His scholarly influence continues to grow, with Scopus indexing showing 128 citations across 119 citing documents, 9 documents, and an h-index of 5. Google Scholar metrics reflect 46 citations, an h-index of 4, and an i10-index of 2. His research aims to advance secure, reliable, and high-performance software delivery by integrating next-generation DevOps automation, AI-driven cybersecurity, and privacy-aware computing frameworks to meet emerging industry and academic challenges.

Profile

Scopus | ORCID

Featured Publications

Thantharate, P., Thantharate, A., & Kulkarni, A. (2024). GREENSKY: A fair energy-aware optimization model for UAVs in next-generation wireless networks. Green Energy and Intelligent Transportation, 3(1), 100130.

Thantharate, P., & Thantharate, A. (2023). ZeroTrustBlock: Enhancing security, privacy, and interoperability of sensitive data through ZeroTrust permissioned blockchain. Big Data and Cognitive Computing, 7(4), 165.

Thantharate, P., & Anurag, T. (2023). CYBRIA: Pioneering federated learning for privacy-aware cybersecurity with brilliance. Proceedings of the IEEE International Conference on Smart Communities.

Thantharate, P. (2023). IntelligentMonitor: Empowering DevOps environments with advanced monitoring and observability. Proceedings of the International Conference on Information Technology, 800–805.

Thantharate, P. (2023). GeneticSecOps: Harnessing heuristic genetic algorithms for automated security testing and vulnerability detection in DevSecOps. Proceedings of the International Conference on Contemporary Computing and Informatics.

Assist. Prof. Dr. Mohanned M. H. AL-Khafaji | Artificial Intelligence | Best Researcher Award

Assist. Prof. Dr. Mohanned M. H. AL-Khafaji | Artificial Intelligence | Best Researcher Award

Engineering | University of Technology | Iraq

Dr. Mohanned Mohammed Hussein Al-Khafaji is an accomplished researcher and academic leader in production engineering, specializing in intelligent manufacturing systems, laser material processing, neural network modeling, and fuzzy logic control applications. As Dean of the College of Production Engineering and Metallurgy at the University of Technology, Baghdad, his research integrates computational modeling, automation, and artificial intelligence to enhance production efficiency and precision engineering. He has made significant contributions to the development of computer-controlled manufacturing systems, laser-based material processing, and predictive modeling using advanced algorithms. His work on CO₂ laser processing, neural network-based machining analysis, and hybrid intelligent systems has advanced industrial automation and smart manufacturing processes. Dr. Al-Khafaji’s research also explores mechatronics, robotic systems, and additive manufacturing, emphasizing simulation tools like Abaqus, COMSOL Multiphysics, and MATLAB. His scientific output reflects substantial academic influence, with 15 Scopus-indexed documents, 41 citations from 37 documents, and an h-index of 3. On Google Scholar, he has accumulated 125 citations, an h-index of 6, and an i10-index of 4, underscoring his growing impact in engineering research.

Profile

Scopus | ORCID | Google Scholar

Featured Publications

Al-Khafaji, M. M. H., & Hubeatir, K. A. (2021). CO2 laser micro-engraving of PMMA complemented by Taguchi and ANOVA methods. Journal of Physics: Conference Series, 1795(1), 012062.

Al-Khafaji, M. M. H. (2018). Neural network modeling of cutting force and chip thickness ratio for turning aluminum alloy 7075-T6. Al-Khwarizmi Engineering Journal, 14(1), 67–76.

Khayoon, M. A., Hubeatir, K. A., & Al-Khafaji, M. M. (2021). Laser transmission welding is a promising joining technology technique – A recent review. Journal of Physics: Conference Series, 1973(1), 012023.

Momena, T. F. A., Mohammed, M. M. H., & Al-Khafaji, M. M. H. (2023). Smart robot vision for a pick and place robotic system. Engineering and Technology Journal, 40(6), 1–15.

Shaker, F., Al-Khafaji, M., & Hubeatir, K. (2020). Effect of different laser welding parameters on welding strength in polymer transmission welding using semiconductor. Engineering and Technology Journal, 38(5), 761–768.*

Assist. Prof. Dr. Mustaqeem Khan | Artificial intelligence | Best Researcher Award

Assist. Prof. Dr. Mustaqeem Khan | Artificial intelligence | Best Researcher Award

Assist. Prof. Dr. Mustaqeem Khan | Assistant Professor | United Arab Emirates University | United Arab Emirates

Academic Background

Dr. Mustaqeem Khan is a distinguished researcher and academic in the field of Artificial Intelligence and Signal Processing. He earned his Doctorate in Software Convergence from Sejong University, South Korea, where his research focused on emotion recognition using deep learning. He also holds a Master’s degree in Computer Science from Islamia College Peshawar, Pakistan, where he was awarded a Gold Medal for academic excellence, and a Bachelor’s degree in Computer Science from the University of Agriculture, Peshawar. Dr. Khan’s scholarly impact is reflected in his remarkable research record, with Scopus indexing 47 documents and over 2,412 citations, resulting in an h-index of 20. On Google Scholar, his work has gained over 2,934 citations, maintaining an h-index of 21 and an i10-index of 31, positioning him among the top two percentage scientists globally.

Research Focus

His research primarily explores Speech and Audio Signal Processing, Emotion Recognition, and Deep Learning. Dr. Khan’s studies integrate multi-modal data analysis through advanced architectures, such as CNNs and Transformers, for applications in speech emotion recognition, computer vision, and energy analytics.

Work Experience

Dr. Khan serves as an Assistant Professor at the United Arab Emirates University, contributing to teaching, research supervision, and curriculum development. Previously, he worked as a Postdoctoral Fellow and Lab Coordinator at the Mohamed Bin Zayed University of Artificial Intelligence, where he collaborated with the Technical Innovation Institute on drone detection systems and managed multidisciplinary AI research teams. Before that, he gained substantial academic and research experience as a Research Assistant at Sejong University and as a Lecturer at Islamia College Peshawar, mentoring students in core computer science and artificial intelligence subjects.

Key Contributions

Dr. Khan has developed several advanced deep learning models, including hybrid attention transformers, multimodal cross-attention networks, and ensemble architectures for audio-visual recognition tasks. His work has contributed to advancements in emotion recognition, drone-based surveillance, and smart city analytics. He has also participated in major funded projects supported by the National Research Foundation of Korea and the Technology Innovation Institute, UAE.

Awards & Recognition

He has been honored with multiple distinctions, including Best Paper Awards, an Outstanding Research Award during his Ph.D., and recognition as a Gold Medalist for academic performance. His inclusion among the Top 2% Scientists (2023–2024) underscores his exceptional research influence and scholarly excellence.

Professional Roles & Memberships

Dr. Khan is an editorial board member and associate editor for several international journals, including the Annals of Applied Sciences and the European Journal of Mathematical Analysis. He serves as a reviewer for over 35 prestigious journals such as IEEE Access, Applied Soft Computing, and Knowledge-Based Systems, actively contributing to academic quality and peer review.

Profile

Scopus | Google Scholar | ORCID

Featured Publications

Khan, M., Ahmad, J., El Saddik, A., & Gueaieb, W. (2025). Joint Multi-Scale Multimodal Transformer for Emotion Using Consumer Devices. IEEE Transactions on Consumer Electronics.

Khan, M., Tran, P. N., Pham, N. T., & Othmani, A. (2025). MemoCMT: Multimodal Emotion Recognition Using Cross-Modal Transformer-Based Feature Fusion. Nature Scientific Reports.

Khan, M., Ahmad, J., El Saddik, A., & Gueaieb, W. (2024). Drone-HAT: Hybrid Attention Transformer for Complex Action Recognition in Drone Surveillance Videos. Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition.

Khan, M., Kwon, S. (2021). Optimal Feature Selection Based Speech Emotion Recognition Using Two-Stream Deep Convolutional Neural Network. International Journal of Intelligent Systems.

Khan, M., Kwon, S. (2021). Att-Net: Enhanced Emotion Recognition System Using Lightweight Self-Attention Module. Applied Soft Computing.

Impact Statement / Vision

Dr. Mustaqeem Khan envisions advancing AI systems capable of understanding human emotions and behaviors with precision and empathy. His goal is to integrate deep learning and multimodal intelligence into real-world applications that enhance human–machine interaction, healthcare, and smart technologies. His ongoing commitment to innovation continues to shape the future of intelligent computing and global research collaboration.

Dr. Ananthoju Vijay Kumar | Artificial Intelligence | Best Researcher Award

Dr. Ananthoju Vijay Kumar | Artificial Intelligence | Best Researcher Award

Associate Professor | Jain Deemed to be University | India

Dr. Ananthoju Vijay Kumar is an accomplished academician and researcher currently serving as an Associate Professor in the Department of Computer Science and Engineering at Jain University, Bangalore. With nearly two decades of dedicated teaching and research experience, he has established himself as a recognized guide and mentor, supervising multiple doctoral candidates. His expertise spans across Cyber Security, Data Mining, Data Warehousing, Data Science, and Natural Language Processing. Dr. Kumar has made significant contributions to his field through impactful research collaborations, scholarly publications, and active participation in professional academic communities.

Publication Profile

Scopus

ORCID

Google Scholar

Education Background

Dr. Ananthoju Vijay Kumar pursued his doctoral studies in Computer Science and Engineering at Acharya Nagarjuna University, where he developed a strong foundation in computational theories and advanced research methodologies. His education provided him with specialized knowledge in core computer science disciplines and helped him build a research-oriented outlook. This academic journey laid the groundwork for his professional career in both teaching and research, equipping him to mentor students and lead projects across multiple domains. His academic credentials reflect his deep engagement in the field and his commitment to advancing the boundaries of computer science education and innovation.

Professional Experience

Dr. Ananthoju Vijay Kumar has held several important academic positions during his career, shaping his path as a teacher, researcher, and guide. Prior to joining Jain University as an Associate Professor, he served in Sree Chaitanya College of Engineering in Telangana, where he contributed to academic growth and program development in computer applications. At Jain University, he continues to lead both undergraduate and postgraduate courses, while simultaneously mentoring doctoral candidates. His ongoing research includes international collaborations, such as a major project with Melbourne University, Australia, further reflecting his active contribution to the global research community.

Awards and Honors

Throughout his career, Dr. Ananthoju Vijay Kumar has been recognized for his excellence in teaching, research, and academic leadership. Notably, he was honored with the APJ Abdul Kalam Lifetime Achievement National Award, presented by the International Institute of Socio Economic Reforms in Bangalore. This recognition underscores his significant contributions to the academic and research ecosystem. His role as a recognized doctoral guide at Jain University further highlights his influence and dedication to nurturing future researchers. His academic and professional achievements stand as a testament to his dedication to advancing knowledge and societal progress through impactful research and mentorship.

Research Focus

Dr. Ananthoju Vijay Kumar’s primary research interests encompass a wide range of areas within computer science. His focus extends across Cyber Security, Data Mining, Data Warehousing, Data Science, and Natural Language Processing. He has successfully guided research scholars in emerging domains such as agricultural data mining and advanced applications of security systems. His collaboration with international institutions has allowed him to address interdisciplinary challenges and deliver innovative solutions. With more than forty publications in reputed national and international journals, he continues to explore cutting-edge topics while contributing to both academic literature and practical applications of technology.

Publication Notes

  • Enhancing drug discovery and patient care through advanced analytics with the power of NLP and machine learning in pharmaceutical data interpretation
    Published Year: 2025
    Citation: 5

  • Investigating the Determinants of Indian Rupee Exchange Rate: An Empirical Analysis of Influential Factors and Their Impact Level: Part 1
    Published Year: 2024
    Citation: 1

  • A Personalized System to Recommend a Healthy Diet Based on an Individual’s Unique Dietary Needs and Goals
    Published Year: 2023
    Citation: 2

  • Penetration Testing to Investigate Security Vulnerabilities, Bugs and Potential Threats in Flip Kart, JioMart, and Amazon Mobile Application
    Published Year: 2023
    Citation: 1

  • Hybrid Algorithm for Real-Time Sign Language Detection System
    Published Year: 2023
    Citation: 5

Conclusion

In summary, Dr. Ananthoju Vijay Kumar stands out as a distinguished academician with a strong record of teaching, mentoring, and impactful research. His academic background, professional experience, and recognized contributions to the field of computer science demonstrate his commitment to innovation and academic growth. His awards and ongoing projects highlight his active role in both national and international research communities. Through his expertise and dedication, Dr. Kumar continues to inspire students and researchers while making meaningful contributions to technology and society.

Changhyoun Park | Machine Learning | Best Researcher Award

Dr. Changhyoun Park | Machine Learning | Best Researcher Award

Research Scientist | Pusan National University | South Korea

Changhyoun Park is a South Korean atmospheric scientist and research scholar currently serving as a Research Scientist at the Institute of Environmental Studies and a Lecturer in the Department of Atmospheric Environmental Sciences at Pusan National University (PNU), South Korea. With extensive international academic and research experience, including postdoctoral positions in the USA, Dr. Park has focused on the intersection of atmospheric modeling, greenhouse gas fluxes, and artificial intelligence. His work bridges theoretical research and practical applications, contributing to the advancement of climate and environmental science through teaching, mentorship, and high-impact scholarly publications.

Publication Profile

Scopus

ORCID

Google Scholar

Education Background

Dr. Changhyoun Park holds a Ph.D. in Atmospheric Sciences from Texas A&M University in the United States, where he conducted advanced research in greenhouse gas fluxes and atmospheric modeling. Prior to this, he earned both his Master’s and Bachelor’s degrees in Atmospheric Sciences from Pusan National University (PNU), South Korea. His academic path reflects a strong commitment to environmental and climate research, enhanced by international collaborations and exposure to multidisciplinary approaches in atmospheric science, machine learning, and mesoscale modeling.

Professional Experience

Dr. Park currently holds dual positions as a Research Scientist at the Institute of Environmental Studies and a Lecturer in the Department of Atmospheric Environmental Sciences at PNU. His prior appointments include postdoctoral research roles at Texas A&M University, the University of California, Los Angeles (JIFRESSE), and PNU. He also has industry experience as a Project Manager at YhKim Co. Ltd. His work includes developing AI-based prediction models, conducting mesoscale simulations, managing national-level carbon modeling projects, and mentoring gifted science students through national science education programs in Korea.

Awards and Honors

Throughout his academic and professional journey, Dr. Changhyoun Park has received multiple awards recognizing his contributions to research and science education. These include the Best Researcher of the Year Award from the Institute of Environmental Studies at PNU, an Outstanding Presentation Award by the Korean Society for Atmospheric Environment, and a Regent’s Graduate Fellowship at Texas A&M University. He was also a session winner at Texas A&M’s Student Research Week and received an Encouragement Award from Korea’s Director’s Council of Gifted Science Education.

Research Focus

Dr. Park’s research centers on micrometeorology, atmospheric carbon modeling, greenhouse gas (GHG) dynamics, and the application of artificial intelligence to environmental prediction systems. His expertise includes mesoscale numerical modeling of GHGs, machine learning-based fog and flux prediction, and eddy covariance data analysis. He has led significant projects on CO₂ radiative forcing, VOC fluxes, and vegetation uptake across East Asia and Korea. His interdisciplinary approach integrates atmospheric science with cutting-edge computational techniques to address pressing climate and environmental challenges.

Publications

Significance of Time-Series Consistency in Evaluating Machine Learning Models for Gap-Filling Multi-Level Very Tall Tower Data
Published Year: 2025
Cited by: 5

Environmental factors contributing to variations in CO2 flux over a barley–rice double‑cropping paddy field in the Korean Peninsula
Published Year: 2022
Cited by: 12

Numerical simulation of atmospheric CO2 concentration and flux over the Korean Peninsula using WRF-VPRM model during Korus-AQ 2016 campaign
Published Year: 2020
Cited by: 20

CO2 transport, variability, and budget over the southern California air basin using the high-resolution WRF-VPRM model during the CalNex 2010 campaign
Published Year: 2018
Cited by: 30

Anthropogenic and biogenic features of long-term measured CO2 flux in north downtown Houston, Texas
Published Year: 2016
Cited by: 24

Conclusion

Dr. Changhyoun Park’s academic and research journey reflects a robust commitment to advancing atmospheric and environmental sciences. His diverse roles across academia, research, and education have positioned him as a leader in micrometeorological modeling and AI applications in climate science. With numerous peer-reviewed publications and funded research projects, he continues to contribute significantly to understanding biosphere-atmosphere interactions, offering scientific insights that support sustainable environmental policy and technological innovation in atmospheric monitoring.

Zaid Allal | Machine Learning | Best Researcher Award

Dr. Zaid Allal | Machine Learning | Best Researcher Award

Dr. Zaid Allal | LISTIC (Laboratory of Computer Science, Systems, Information and Knowledge Processing) | Morocco

Zaid Allal is a Moroccan researcher and doctoral candidate in computer science specializing in artificial intelligence applications for energy systems. With a solid foundation in mathematics and computing, he has built his academic and professional journey through a blend of education, research, and teaching. His work integrates machine learning with renewable energy systems, focusing on optimizing hydrogen energy technologies. Currently affiliated with the University of Savoie Mont Blanc and the LISTIC Laboratory in France, his research explores intelligent solutions for predictive maintenance, fault detection, and system stability. His dedication lies in bridging sustainable energy with advanced AI technologies.

Publication Profile

Scopus

ORCID

Google Scholar

Education Background

Zaid Allal holds a Master’s degree in Advanced Information Technology and Computing Applications from the University of Franche-Comté in France, graduating with distinction and honors. He earned a Bachelor’s degree in Mathematics and IT Systems from Mohammed First University in Oujda. Before his higher education, he received his Baccalaureate in Physical Sciences and Chemistry with honors. Additionally, he completed a certified training in Mathematics Education, coordinated with the Moroccan Ministry of Education. His strong academic background in both theoretical and applied domains provides a firm base for his research in AI and renewable energy integration.

Professional Experience

Zaid has over seven years of experience in mathematics education under the Moroccan Ministry of Education. Transitioning into research, he engaged in machine learning projects focused on renewable energy systems and hydrogen technologies at the University of Franche-Comté. Currently, he is a Ph.D. researcher at the University of Savoie Mont Blanc and contributes to the LISTIC Laboratory. His projects span predictive analytics, power consumption forecasting, and anomaly detection in smart grids. His work integrates theoretical AI models with practical energy sector challenges, contributing to research publications, international conferences, and innovative academic-industrial collaborations.

Awards and Honors

Zaid Allal has consistently demonstrated academic excellence throughout his career, receiving distinction and honors during both his undergraduate and postgraduate studies. His Master’s program recognized his outstanding performance with academic distinction. In addition to his formal qualifications, he has participated in several high-impact training initiatives, including NASA Space Apps competitions and AI ambassador programs. These accolades reflect his commitment to excellence in education, innovation, and technological advancement, highlighting his dedication to exploring and applying cutting-edge artificial intelligence methods within the energy and environmental sectors.

Research Focus

Zaid’s research centers on applying machine learning and deep learning techniques to address challenges in renewable energy systems and the hydrogen value chain. He focuses on areas such as predictive maintenance, fault and anomaly detection, power forecasting, and system optimization. His expertise extends to smart grids, hydrogen storage systems, and photovoltaic energy solutions. He employs explainable AI and reinforcement learning to develop sustainable, efficient, and interpretable models. By combining theoretical AI approaches with real-world energy applications, he aims to contribute to the advancement of intelligent and sustainable energy infrastructures.

Top  Publications

Explainable AI of Tree-Based Algorithms for Fault Detection and Diagnosis in Grid-Connected PV Systems
Published Year: 2025
Citation: 14

Review on ML Applications in Hydrogen Energy Systems
Published Year: 2025
Citation: 11

Power Consumption Prediction in Warehouses Using Variational Autoencoders and Tree-Based Regression Models
Published Year: 2024
Citation: 9

Efficient Health Indicators for RUL Prediction of PEM Fuel Cells
Published Year: 2024
Citation: 7

Machine Learning Algorithms for Solar Irradiance Prediction: A Comparative Study
Published Year: 2024
Citation: 6

Conclusion

Zaid Allal exemplifies the fusion of academic excellence, professional dedication, and research-driven innovation. With a strong foundation in mathematics and computing, he has evolved into a researcher committed to applying artificial intelligence in solving pressing energy challenges. His work across renewable energy, hydrogen systems, and smart grid technologies positions him as a valuable contributor to the evolving energy-tech landscape. Through ongoing research, publication, and collaboration, he continues to push the boundaries of sustainable innovation, striving to create data-driven and explainable solutions for the future of energy management and system optimization.

Ms. Elahe Rahmani Samani | Artificial Intelligence | Young Researcher Award

Ms. Elahe Rahmani Samani | Artificial Intelligence | Young Researcher Award

Ms. Elahe Rahmani Samani, Undergraduate Researcher, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.

Ms. Elahe Rahmani Samani is a dedicated undergraduate researcher in Healthcare Management at Shahid Sadoughi University of Medical Sciences, Yazd, Iran. With a strong commitment to advancing health systems through innovative technologies, she has emerged as a promising young voice in the intersection of healthcare and artificial intelligence. As the corresponding author of a high-impact study published in the International Journal of Medical Informatics, she has already gained visibility on an international platform. Elahe is also an editorial board member of a university-affiliated journal and actively engages in research collaboration, demonstrating leadership and academic excellence early in her career.

Publication Profile

ORCID

🎓 Education Background

Ms. Elahe Rahmani Samani is currently pursuing her undergraduate degree in Healthcare Management at Shahid Sadoughi University of Medical Sciences in Yazd, Iran. Her academic journey has been marked by an early passion for healthcare innovation and policy development. As a student member of the Health Policy and Management Research Center, she has access to extensive research mentorship and academic resources, which support her pursuits in AI integration in health systems. Her education equips her with both practical management knowledge and technical understanding essential for modern health leadership. She continues to excel academically, contributing meaningfully to her institution’s research mission.

💼 Professional Experience

Although still an undergraduate student, Ms. Rahmani Samani has demonstrated remarkable initiative by leading and collaborating on several research projects. Her standout experience includes serving as the primary researcher and corresponding author for a study on AI adoption in hospital settings, presented at the International Congress on Artificial Intelligence in Health. She also serves on the editorial board of a university-affiliated journal, where she helps shape academic content for peer learning. Elahe’s active involvement in health systems projects, poster sessions, and ongoing collaborations reflect her deep engagement with practical and theoretical aspects of healthcare management.

🏆 Awards and Honors

While formal awards are yet to be recorded due to her early stage in academia, Ms. Elahe Rahmani Samani has achieved significant recognition by publishing in a Scopus-indexed journal and presenting at an international congress. She earned certificates of participation from the International Congress on Artificial Intelligence in Health and is continuously contributing to scholarly work in health systems. Her selection for the editorial board role and involvement in a university-level book project highlight the academic community’s acknowledgment of her talents. Her publication is already accessible through global platforms and is poised to gain academic citations in the near future.

🔬 Research Focus

Elahe Rahmani Samani’s research interests revolve around hospital and healthcare management, particularly in leveraging artificial intelligence to optimize health systems for both patients and staff. She has successfully completed one major research project that analyzes hospital managers’ perspectives on AI integration—an innovative topic reflecting current global trends. Her work aims to influence strategic decision-making within health institutions by promoting the adoption of intelligent systems. She is also contributing to an ongoing book project in healthcare management and continues to work on four other health-related research studies, exploring themes of efficiency, technology adoption, and patient-centered care in health policy.

🧭 Conclusion

Ms. Elahe Rahmani Samani exemplifies the drive and intellect of a next-generation healthcare researcher. Her early publication in a high-impact journal and involvement in both local and international academic platforms underscore her potential to become a leader in the field. With a unique blend of management insight and technological perspective, she aims to transform how healthcare institutions approach innovation. Her commitment to research excellence, combined with her growing professional network and academic contributions, positions her as a strong contender for the Young Researcher Award. Her journey is only beginning, and she is already contributing to global discussions in health innovation.

📚 Top Publication Note

Title: Managers’ perceptions and attitudes toward the use of artificial intelligence technology in selected hospital settings
Authors: Mousavi SM, RahmaniSamani E, Raadabadi M, DehghaniTafti A
Journal: International Journal of Medical Informatics
Year: 2025

Dr. vincebt majanga | Artificial intelligence | Best Researcher Award

Dr. vincebt majanga | Artificial intelligence | Best Researcher Award

Post doctoral research fellow, university of south africa, South Africa.

Dr. Vincent Idah Majanga  is a dynamic and passionate researcher in Artificial Intelligence (AI), with over a decade of impactful experience in developing cutting-edge algorithms to solve complex real-world problems. His primary expertise lies in machine learning, deep learning, neural network optimization, and computer vision—especially for medical imaging and diagnostic tasks. Dr. Majanga is proficient in Python and Java, and his interdisciplinary skills extend to computer-aided diagnostics, simulation and modeling, computer forensics, and networking. A devoted academician and mentor, he has served in teaching and research capacities across renowned institutions in Kenya and South Africa. His current role as a Postdoctoral Researcher at the University of South Africa (UNISA) underlines his continued contributions to AI-driven healthcare solutions and intelligent systems.

Publication Profile

ORCID

📘 Education Background

Dr. Majanga completed his Ph.D. in Computer Science from the University of KwaZulu-Natal  (2018–2022), focusing on dental image segmentation and AI-based diagnostic systems. He holds an MSc in Computer Science from the University of Nairobi (2012–2014), and a BSc in Computer Science (Upper Second Class) from Kabarak University  (2009–2011). He also studied Computer Engineering at Moi University (2005–2008, credit transferred), and attended Nairobi School for his secondary education (2001–2004). His academic foundation forms the bedrock of his AI-driven research innovations.

💼 Professional Experience

Dr. Majanga is currently a Postdoctoral Researcher at UNISA  (Dec 2023–Present), where he works on deep learning, neural networks, transfer learning, and model optimization in image processing. He is also a part-time lecturer at Masinde Muliro University of Science and Technology  since 2022. Previously, he served as an Assistant Lecturer at Laikipia University  (2015–2023), contributing to curriculum development and student supervision. He has also lectured part-time at JKUAT Nakuru Campus, Dedan Kimathi University, and Kabarak University. Across these roles, he has consistently contributed to high-impact teaching, curriculum development, and academic mentorship.

🏆 Awards and Honors

Dr. Majanga has earned recognition through certifications in Research Ethics from the Clinical Trials Centre at The University of Hong Kong 🏅, completing three modules between March and April 2024—Introduction to Research Ethics, Research Ethics Evaluation, and Informed Consent. These certifications affirm his commitment to ethical research standards and responsible conduct in AI healthcare studies.

🔬 Research Focus

Dr. Majanga’s research focuses on Artificial Intelligence applications in medical imaging and diagnostics, with a specialization in deep learning, computer vision, and unsupervised segmentation. His significant contributions include blob detection and component analysis techniques for identifying cancerous lesions and dental caries in radiographs. His Ph.D. research and publications highlight strong applications of active contour models, connected component analysis, and dropout regularization in healthcare AI systems.

📝 Conclusion

Dr. Vincent Idah Majanga is a dedicated AI researcher and academician with a rich educational and professional background that aligns with transformative applications of artificial intelligence in medical diagnostics. His teaching, ethical research approach, and cross-continental academic presence have made him a valuable contributor to the global AI and computer science communities.

📚 Top Publications Highlights

  1. Automatic Blob Detection Method for Cancerous Lesions in Unsupervised Breast Histology Images
    📅 2025 | 📰 Bioengineering, 12(4), p.364
    🔎 Cited by: 8 articles

  2. Active Contours Connected Component Analysis Segmentation Method of Cancerous Lesions in Unsupervised Breast Histology Images
    📅 2025 | 📰 Bioengineering, 12(6), p.642
    🔎 Cited by: 5 articles

  3. A Survey of Dental Caries Segmentation and Detection Techniques
    📅 2022 | 📰 The Scientific World Journal, 2022
    🔎 Cited by: 21 articles

  4. Automatic Blob Detection for Dental Caries
    📅 2021 | 📰 Applied Sciences, 11(19), p.9232
    🔎 Cited by: 17 articles

  5. Dental Images’ Segmentation Using Threshold Connected Component Analysis
    📅 2021 | 📰 Computational Intelligence and Neuroscience, 2021
    🔎 Cited by: 12 articles

  6. Dropout Regularization for Automatic Segmented Dental Images
    📅 2021 | 📰 Asian Conference on Intelligent Information and Database Systems, Springer
    🔎 Cited by: 6 articles

  7. A Deep Learning Approach for Automatic Segmentation of Dental Images
    📅 2019 | 📰 MIKE 2019, Springer
    🔎 Cited by: 18 articles

  8. Component Analysis
    📅 2025 | 📰 WIDECOM 2024, Vol. 237, p.139, Springer Nature
    🔎 Cited by: 2 articles

 

Mr. Abdullah Al Mamun | Deep Learning | Young Scientist Award

Mr. Abdullah Al Mamun | Deep Learning | Young Scientist Award

Lecturer, Dhaka University of Engineering & Technology (DUET), Gazipur, Bangladesh

Abdullah Al Mamun is a passionate researcher and academic professional specializing in Internet of Things (IoT), Machine Learning 🤖, and Explainable Artificial Intelligence (XAI). Currently pursuing his Master of Science in Engineering at Dhaka University of Engineering & Technology (DUET), Gazipur, he brings a vibrant combination of theoretical knowledge and hands-on research experience. His dynamic involvement in projects across sustainability, computer vision 🧠, and intelligent systems has positioned him as a promising contributor to the technology and research domain.

Publication Profile

ORCID

🎓 Education Background

Abdullah Al Mamun is presently pursuing his M.Sc. in Computer Science and Engineering at DUET, Gazipur (since October 2024), where he has already completed his Bachelor of Science in Computer Science and Engineering with distinction in 2024 🎓. His consistent academic journey showcases his dedication to computing, innovation, and advanced research.

💼 Professional Experience

Mamun is currently working as a Lecturer at the Department of CSE, Model Institute of Science and Technology, Gazipur, while also serving as a part-time Research Assistant in the Multimedia Signal & Image Processing research group at Woosong University, South Korea 🌏. With three years of tutoring experience at ACME DUET Admission Coaching Center, and two internships in web development and CMS technologies, he has gained broad teaching, mentoring, and development experience across various platforms 🖥️. His administrative roles in DUET Career & Research Club and DUET Computer Society also underscore his leadership and community contributions.

🏆 Awards and Honors

Abdullah has been recognized for his academic and problem-solving excellence. He earned the “Second Runner-Up” at BEYOND THE METRICS-2023 hosted by IUT (OIC), and “Runner-Up” at the Intra DUET Programming Contest (IDPC) 2022 🏅. He has actively participated in events like NASA Space App Challenge 2024 and DUET TECH FEST-2023, reflecting his engagement in competitive and innovation-driven activities 🚀.

🔬 Research Focus

Abdullah’s core research interests lie in IoT and sustainability, Machine Learning, Computer Vision, Explainable AI, and Reinforcement Learning 🧠📡. He has been instrumental in implementing real-world projects such as IoT-based energy monitoring systems and child safety monitoring, defect detection via XAI, and skin cancer classification using optimized deep learning models. His collaborative projects with global research teams exhibit his strong contribution to the evolving field of intelligent systems and digital transformation.

✅ Conclusion

With an impressive blend of academic rigor, technical skills, and collaborative research experience, Abdullah Al Mamun is making impactful strides in the field of computer science 🧩. His work exemplifies innovation, sustainability, and intelligence in engineering systems. He continues to grow as a researcher dedicated to contributing to global scientific advancements 🌐.

📚 Top Publications 

  1. Developed an IoT-based Smart Solar Energy Monitoring System for Environmental Sustainability3rd International Conference on Advancement in Electrical and Electronic Engineering, 2024.
    Cited by: 7 articles 📑

  2. Developing an IoT-based Child Safety and Monitoring System: An Efficient ApproachIEEE 26th International Conference on Computer and Information Technology (ICCIT), 2023.
    Cited by: 13 articles 🔐

  3. Software Defects Identification: Results Using Machine Learning and Explainable Artificial Intelligence TechniquesIEEE Journal, 2024.
    Cited by: 15 articles ⚙️

  4. IoT-Based Solutions for Uneven Roads and Balanced Vehicle Systems Using YOLOv8MDPI Sensors Journal, 2023.
    Cited by: 10 articles 🚗

  5. Optimizing Deep Learning for Skin Cancer Classification: A Computationally Efficient CNN2nd NCIM Conference, Bangladesh, 2024.
    Cited by: 5 articles 🧬

  6. Enhancing DBSCAN Dynamically: A Novel Approach to Parameter Initialization and Outlier ReductionBachelor Thesis, DUET, 2024.
    Cited by: 3 articles 🔍