Ulas Bagci | Artificial Intelligence | Outstanding Scientist Award

Assoc. Prof. Dr. Ulas Bagci | Artificial Intelligence | Outstanding Scientist Award

Assoc. Prof., Northwestern University, United States

Dr. Ulas Bagci is a distinguished researcher and tenured Associate Professor at Northwestern University, specializing in Radiology, Electrical and Computer Engineering, and Biomedical Engineering. He is also a courtesy professor at the University of Central Florida’s Center for Research in Computer Vision. As the Director of the Machine and Hybrid Intelligence Lab, Dr. Bagci focuses on the integration of artificial intelligence, deep learning, and medical imaging. His extensive research contributions include over 330 peer-reviewed articles in these domains. Previously, he was a staff scientist and lab co-manager at the National Institutes of Health (NIH), where he played a pivotal role in advancing AI-driven medical imaging applications. Dr. Bagci actively contributes to leading scientific journals, serving as an associate editor for IEEE Transactions on Medical Imaging, Medical Physics, and Medical Image Analysis.

Publication Profile

🎓 Education

Dr. Ulas Bagci holds a Ph.D. in Computer Science from the University of Nottingham (2010), where he conducted pioneering research in medical imaging. He was a Visiting Research Fellow in Radiology at the University of Pennsylvania (2008-2009), further refining his expertise in AI applications for biomedical sciences. He earned his M.Sc. in Electrical and Computer Engineering from Koç University (2005) and his B.Sc. in Electrical and Computer Engineering from Bilkent University (2003).

💼 Experience

Dr. Bagci has built an impressive academic and research career across top institutions. Since 2021, he has been an Associate Professor at Northwestern University, where he leads research in AI-driven medical imaging. Before that, he served as an Assistant Professor in Computer Science at the University of Central Florida (2014-2020), fostering innovation in deep learning for radiology. From 2010 to 2014, he was a Staff Scientist and Lab Manager at the National Institutes of Health (NIH), playing a key role in infectious disease imaging and AI applications in radiology.

🏅 Awards and Honors

Dr. Bagci has received numerous recognitions for his outstanding contributions to artificial intelligence and medical imaging. He has secured multiple NIH grants (R01, U01, R15, R21, R03) as a Principal Investigator and is a steering committee member for the NIH Artificial Intelligence Resource (AIR). Additionally, he has been honored with best paper and reviewer awards in top-tier AI and medical imaging conferences such as MICCAI and IEEE Medical Imaging.

🔬 Research Focus

Dr. Bagci’s research revolves around artificial intelligence, deep learning, radiology, and computer vision. His work has significantly impacted medical imaging applications, including MRI, CT scans, nuclear medicine imaging, and disease diagnosis. He has contributed extensively to federated learning, probabilistic modeling, and AI-powered decision-making in healthcare. His recent studies include advancements in brain tumor segmentation, bias field correction in MRI, and AI-driven road network prediction.

🔚 Conclusion

Dr. Ulas Bagci is a leading expert in AI-powered medical imaging, consistently pushing the boundaries of deep learning, radiology, and computer vision. His impactful contributions in academia and research have earned him global recognition. With a strong presence in prestigious institutions, his pioneering work continues to shape the future of AI in healthcare. 🚀

📚 Publications

Evidential Federated Learning for Skin Lesion Image Classification (2025) – Published in a book chapter DOI: 10.1007/978-3-031-78110-0_23 📖

Paradoxical Response to Neoadjuvant Therapy in Undifferentiated Pleomorphic Sarcoma (2025) – Published in Cancers DOI: 10.3390/cancers17050830 🏥

Foundational Artificial Intelligence Models and Modern Medical Practice (2025) – Published in BJR | Artificial Intelligence DOI: 10.1093/bjrai/ubae018 🧠

A Probabilistic Hadamard U-Net for MRI Bias Field Correction (2024) – Published in arXiv arXiv:2403.05024 🖥️

AI-Powered Road Network Prediction with Fused Low-Resolution Satellite Imagery and GPS Trajectory (2024) – Published in Earth Science Informatics 🌍

Beyond Self-Attention: Deformable Large Kernel Attention for Medical Image Segmentation (2024) – Presented at the IEEE/CVF Winter Conference on Applications of Computer Vision 🤖

Brain Tumor Segmentation (BraTS) Challenge 2024: Meningioma Radiotherapy Planning Automated Segmentation  (2024) – Published in arXiv arXiv:2405.18383 🏥

 

Carolina Magalhães | Machine Learning | Best Researcher Award

Dr. Carolina Magalhães | Machine Learning | Best Researcher Award

Investigadora, INEGI – Instituto de Ciência e Inovação em Engenharia Mecânica e Industrial, Portugal

👩‍🔬 Carolina Magalhães is a dedicated biomedical engineer and PhD candidate with expertise in applying AI and imaging technologies to healthcare challenges. Based in Porto, Portugal, she combines her passion for modern technology with a problem-solving mindset to develop innovative solutions in skin cancer diagnostics. Carolina has worked collaboratively with clinical experts to bridge research and practical applications, contributing significantly to advancing imaging-based decision support systems.

Publication Profile

ORCID

Education

🎓 Carolina holds a PhD in Biomedical Engineering from the Faculdade de Engenharia da Universidade do Porto (2020–2024). She also completed her MSc in Biomedical Engineering at the same institution (2016–2018) and earned her Bachelor’s in Bioengineering – Biomedical Engineering from Universidade Católica Portuguesa (2013–2016).

Experience

💼 Carolina has a rich research background, currently serving as a Graduate Research Fellow at INEGI, focusing on skin lesion diagnosis using multispectral imaging. Her work spans from leveraging machine learning models for skin cancer classification to thermal and UV imaging techniques. Previously, she contributed to projects on hyperhidrosis diagnosis, prosthetic device design, and thermal image analysis for musculoskeletal disorders, collaborating with leading hospitals and research centers in Portugal.

Research Interests

🔬 Carolina is passionate about exploring artificial intelligence, machine learning, and advanced imaging technologies for healthcare applications. Her interests include developing multispectral imaging systems, improving diagnostic tools for skin cancer, and advancing infrared thermography for clinical support systems.

Awards

🏆 Carolina’s innovative work has been recognized with prestigious research grants from the Foundation for Science and Technology (SFRH/BD/144906/2019) and other funding organizations. These awards have supported her impactful contributions to biomedical engineering and healthcare innovation.

Publications

“Systematic Review of Deep Learning Techniques in Skin Cancer Detection”
BioMedInformatics, 11/2024
Read here

“Skin Cancer Image Classification with Artificial Intelligence Strategies: A Systematic Review”
Journal of Imaging, 10/2024
Read here

“Use of Infrared Thermography for Abdominoplasty Procedures in Patients with Extensive Subcostal Scars: A Preliminary Analysis”
Plast Reconstr Surg Glob Open, 06/2023
Read here

“Classic Versus Scarpa-Sparing Abdominoplasty: An Infrared Thermographic Comparative Analysis”
J Plast Reconstr Aesthet Surg, 06/2023
Read here

“Towards an Effective Imaging-Based Decision Support System for Skin Cancer”
Handbook of Research on Applied Intelligence for Health and Clinical Informatics, 10/2022
Read here

Rongfang Wang | Artificial Intelligence | Best Researcher Award

Prof. Rongfang Wang | Artificial Intelligence | Best Researcher Award

Associate Professor, School of Artificial Intelligence/Xidian University, China

🌟 Rongfang Wang, Ph.D. is an accomplished Associate Professor at the School of Artificial Intelligence, Xidian University, Xi’an, China. With a deep passion for machine learning and medical image processing, Dr. Wang has dedicated her career to advancing artificial intelligence in healthcare and remote sensing applications. Her work has been recognized through various research grants and scholarly publications, establishing her as a leader in her field. 🌍💡

Publication Profile

Google Scholar

Strengths for the Award

  1. Innovative Research: Rongfang Wang’s research covers advanced topics such as machine learning, deep learning, medical image processing, and multimodal fusion, indicating a strong focus on cutting-edge technology. Her work in areas like treatment outcome prediction and landslide hazard analysis demonstrates the applicability and impact of her research.
  2. Funding and Grants: Wang has secured substantial funding from prestigious organizations, including the National Natural Science Foundation of China and various key research programs. Her roles as Principal Investigator (PI) on multiple projects reflect her ability to lead and manage high-impact research initiatives.
  3. Publication Record: Wang has an impressive publication record in high-impact journals, with numerous peer-reviewed papers and conference proceedings. Her work spans various high-profile publications, demonstrating significant contributions to her field.
  4. International Experience: Her experience as a visiting scholar at The University of Texas Southwestern Medical Center adds an international perspective to her research, enhancing her profile in the global research community.
  5. Mentorship and Training: Wang actively mentors multiple M.D. students, highlighting her commitment to developing future researchers and contributing to the academic community beyond her own research.

Areas for Improvement

  1. Broader Impact Evidence: While Wang’s publications and funding are substantial, providing more detailed evidence of the real-world impact and practical applications of her research could strengthen her nomination. Specifically, examples of how her work has influenced industry practices or policy changes would be beneficial.
  2. Collaborative Work: Increasing collaborative research efforts with other institutions or industry partners could further enhance her research’s breadth and applicability. While she has secured significant grants, highlighting any collaborative projects or partnerships could showcase a broader impact.
  3. Diversity in Research Topics: Wang’s research is heavily focused on remote sensing and medical image processing. Expanding her research portfolio to include a wider range of topics within artificial intelligence or interdisciplinary fields might provide a more comprehensive view of her research capabilities.

 

Education

🎓 Dr. Wang earned her Ph.D. in Electronic Science and Technology from Xidian University, Xi’an, China, in 2014. She also holds a Master’s degree in the same field from Xidian University, obtained in 2007. 📘🎓

Experience

🧑‍🏫 Dr. Wang has held several academic and research positions, including her current role as an Associate Professor at the School of Artificial Intelligence, Xidian University. She was a Visiting Scholar at the University of Texas Southwestern Medical Center, Dallas, USA, and has extensive experience as a postdoctoral fellow and instructor at Xidian University. 📚💻

Research Focus

🔍 Dr. Wang’s research interests span multiple domains, including machine learning, deep learning, medical image processing, treatment outcome prediction, image registration, model compression, and computer vision. She is particularly known for her work in multimodal learning and its applications in healthcare and environmental monitoring. 🌿🧠

Awards and Honours

🏅 Dr. Wang has secured numerous prestigious research grants, including from the National Natural Science Foundation of China and the State Key Laboratory of Multimodal Artificial Intelligence Systems. Her innovative research in machine learning and remote sensing has been consistently funded and recognized by leading academic institutions and government bodies. 🥇🌟

Publication Top Notes

📝 Dr. Wang has authored several impactful papers, including her work on “A Multi-Modality Fusion and Gated MultiFilter U-Net for Water Area Segmentation in Remote Sensing” published in Remote Sensing (2024). She also developed the ASF-LKUNet model for medical image segmentation, published in TechRxiv (2023). 📑🌍

S Zhang, W Li, R Wang, C Liang, X Feng, Y Hu. DaliWS: A High-Resolution Dataset with Precise Annotations for Water Segmentation in Synthetic Aperture Radar Images. Remote Sensing, Vol 16 (4), 720, 2024.

R Wang, C Zhang, C Chen, H Hao, W Li, L Jiao. A Multi-Modality Fusion and Gated MultiFilter U-Net for Water Area Segmentation in Remote Sensing. Remote Sensing, Vol 16 (2), 419, 2024.

R Wang, Z Mu, J Wang, K Wang, H Liu, Z Zhou, L Jiao. ASF-LKUNet: Adjacent-Scale Fusion U-Net with Large-kernel for Medical Image Segmentation. TechRxiv, 2023.

R Wang, J Guo, Z Zhou, K Wang, S Gou, R Xu, D Sher, J Wang. Locoregional recurrence prediction in head and neck cancer based on multi-modality and multi-view feature expansion. Physics in Medicine & Biology, Vol 67 (12), 125004, 2022.

R Wang, L Wang, X Wei, JW Chen, L Jiao. Dynamic graph-level neural network for SAR image change detection. IEEE Geoscience and Remote Sensing Letters, Vol 19, 1-5, 2021.

L Chen, M Dohopolski, Z Zhou, K Wang, R Wang, D Sher, J Wang. Attention guided lymph node malignancy prediction in head and neck cancer. International Journal of Radiation Oncology Biology Physics, Vol 110 (4), 1171-1179, 2021.

K Wang, Z Zhou, R Wang, L Chen, Q Zhang, D Sher, J Wang. A multi‐objective radiomics model for the prediction of locoregional recurrence in head and neck squamous cell cancer. Medical Physics, Vol 47 (10), 5392-5400, 2020.

Conclusion

Rongfang Wang is a strong candidate for the Research for Best Researcher Award due to her innovative research, impressive funding achievements, and significant contributions through publications. Her international experience and dedication to mentoring add further value to her profile. To enhance her candidacy, focusing on demonstrating the broader impact of her work and increasing collaborative efforts could be beneficial. Overall, her qualifications and accomplishments make her a compelling nominee for the award