Dr. Uddalak Mitra | Machine learning | Best Researcher Award

Dr. Uddalak Mitra | Machine learning | Best Researcher Award

Assistant Professor, JIS College of Engineering, India

Dr. Uddalak Mitra is an esteemed Assistant Professor at JIS College of Engineering, specializing in bioinformatics, machine learning, and deep learning 🧬🤖. With a strong academic foundation and a passion for research, he has significantly contributed to the intersection of computational intelligence and biological sciences. His expertise lies in decoding DNA, RNA, and protein sequences using cutting-edge AI techniques, paving the way for advancements in healthcare and genomics. Dr. Mitra’s work seamlessly blends theoretical knowledge with real-world applications, making impactful strides in both academia and industry.

Publication Profile

Google Scholar

🎓 Education:

Dr. Mitra has built a solid academic background in computational sciences, equipping himself with the expertise required to address complex biological challenges. His educational journey has provided him with the technical prowess to integrate artificial intelligence into biomedical research.

💼 Experience:

As an Assistant Professor at JIS College of Engineering, Dr. Mitra actively engages in research and mentoring, shaping the next generation of scientists. His work focuses on applying machine learning models to analyze biological data, improving early disease detection methodologies. Additionally, he has authored several research papers and contributed to the academic community through his innovative studies.

🏆 Awards and Honors:

Dr. Mitra has made commendable contributions to scientific research, earning recognition for his published works. He holds 9 patents, showcasing his dedication to innovation. His memberships in esteemed organizations like IFERP and ISTE reflect his commitment to professional development and research excellence.

🔬 Research Focus:

His research primarily revolves around bioinformatics, machine learning, and deep learning. He explores information-theoretic tools for biological sequence analysis, integrating artificial intelligence to derive meaningful insights from genomic data. His recent studies focus on clinical applications of AI, particularly in disease diagnosis and personalized medicine.

🔍 Conclusion:

Dr. Uddalak Mitra is a pioneering researcher dedicated to bridging the gap between bioinformatics and artificial intelligence. His contributions to genomic research, coupled with his expertise in AI-driven disease diagnosis, make him a valuable asset to the scientific community. With a strong foundation in computational biology, he continues to push the boundaries of research, striving for innovations that benefit both medicine and technology.

📚 Publications:

Leveraging AI and Machine Learning for Next-Generation Clinical Decision Support Systems (CDSS) – Published in AI-Driven Innovation in Healthcare Data Analytics, 2025.

Cognitive Handwriting Insights for Alzheimer’s Diagnosis: A Hybrid FrameworkInformation, 2025

Integrated System for Disease Detection Using Semiconductor-Based Gas Sensors and AI/MLIN Patent A61B0005080000, 2025

Significance of AI/ML Wearable Technologies for Education and TeachingWearable Devices and Smart Technology for Educational Teaching Assistance, 2025

Integrating AI/ML With Wearable Devices for Monitoring Student Mental HealthWearable Devices and Smart Technology for Educational Teaching Assistance, 2025

The Evolution of Entrepreneurship in the Age of AIAdvanced Intelligence Systems and Innovation in Entrepreneurship, 2024

A Novel Algorithm for Genomic STR Mining: Application to Phylogeny Reconstruction and Taxa IdentificationInternational Journal of Bioinformatics Research and Applications, 2024

Mr. Ahmad Faraz Hussain | Machine learning | Best Scholar Award

Mr. Ahmad Faraz Hussain | Machine learning | Best Scholar Award

PhD student, Zhejiang university, China

Ahmad Faraz Hussain is an accomplished researcher and engineer specializing in audio signal processing, speaker recognition, and wireless sensor networks. With a strong academic background and extensive technical experience, he has contributed significantly to the field of electronics and information engineering. His work spans research, teaching, and industry, reflecting his passion for innovation and education.

Publication Profile

Scopus

🎓 Education:

Ahmad Faraz Hussain earned his Master of Science in Electronics & Information Engineering from the South China University of Technology, China (2017–2019), achieving an impressive 90%. His thesis focused on “Speaker Recognition with Emotional Speech,” showcasing his expertise in audio processing. He completed his Bachelor of Science in Electrical Engineering from the University of Engineering and Technology, Peshawar, Pakistan (2009–2014), with a thesis on “ZigBee-Based Wireless Sensor Network for Building Safety Monitoring.”

💼 Professional Experience:

Ahmad has a diverse professional journey, beginning as a Research Assistant at the South China University of Technology (2017–2019), where he worked on cutting-edge projects in speech recognition. Before that, he served as a Lecturer at Polytechnical College Kohat (2016–2017), imparting knowledge to aspiring engineers. His technical expertise was further honed during his two-year tenure as a Technical Engineer at PTCL, Pakistan, where he worked on telecommunications and networking solutions.

🏆 Awards and Honors:

Ahmad was a recipient of the prestigious CSC Scholarship, which enabled him to pursue his master’s degree in China. His academic excellence and dedication to research have earned him recognition in both academic and professional circles.

🔬 Research Focus:

Ahmad’s research interests lie in audio signal processing, speaker recognition, speech recognition, and wireless sensor networks. His work focuses on developing advanced methodologies for improving speech-based systems and enhancing security through smart sensor networks. His contributions to these fields are evident in his multiple publications and research projects.

🔚 Conclusion:

Ahmad Faraz Hussain is a dedicated researcher and engineer with a strong foundation in speech and wireless sensor technologies. His academic achievements, professional experience, and research contributions highlight his commitment to innovation and education. With a passion for higher learning and community service, he continues to make impactful contributions to the field of electronics and information engineering. 🚀

📚 Publications:

Three-Dimensional Dynamic Positioning Using a Novel Lyapunov-Based Model Predictive Control for Small Autonomous Surface/Underwater Vehicles

Fish Detection and Classification Based on Improved ViT

ZigBee-Based Wireless Sensor Network for Building Safety Monitoring – Published in the Journal of TWASP. Read here.

Speaker Recognition with Emotional Speech – Published in GSJ. Read here.

Speech Emotion Recognition – Under review.

ZigBee and GSM-Based Security System for Business Places– Accepted for publication.

Internet of Things-Based Information System for Smart Wireless Sensor Healthcare Applications – Submitted for review.

Huan Zhao | Machine Learning | Best Researcher Award

Assoc. Prof. Dr . Huan Zhao | Machine Learning | Best Researcher Award

Associate Professor, School of Aeronautics, Northwestern Polytechnical University, China

Huan Zhao is an associate professor at the School of Aeronautics, Northwestern Polytechnical University (NPU), China. He specializes in aerodynamics, multidisciplinary design optimization, uncertainty quantification, and machine learning, focusing on CFD simulation, AI-based global optimization, and surrogate modeling. He is also the executive deputy director of the Institute of Digital Intelligence for Flight Mechanics and Aerodynamic Design (IDIFMAD). Zhao has made significant contributions to the fields of aerodynamic shape optimization, high-dimensional global optimization, and uncertainty-based robust design. He holds several patents and has authored many high-impact publications. 🌐✈️

Publication Profile

Education

Huan Zhao completed his Ph.D. in Fluid Dynamics at Northwestern Polytechnical University (NPU) in 2020, following a B.Eng. in Aircraft Design and Engineering from the same university in 2014. 📚🎓

Experience

Zhao served as a tenure-track assistant professor at Sun Yat-sen University (SYSU) before joining NPU as a tenure-track associate professor in 2023. He has directed and participated in numerous research projects focusing on aerodynamic design optimization, high-speed rotor airfoil design, and surrogate-assisted design techniques. He is a principal investigator (PI) for multiple projects funded by the National Natural Science Foundation of China (NSFC). 👨‍🏫🔬

Awards and Honors

Huan Zhao has received several awards and honors, including recognition as part of the “Hundred Talents Plan” Young Academic Backbone at SYSU and multiple patents for his innovative contributions to aerodynamic design. 🏆🎖️

Research Focus

Zhao’s research interests lie in aerodynamics, including multi-fidelity polynomial chaos-Kriging models, aerodynamic shape optimization, and uncertainty quantification. His work has contributed significantly to the design and optimization of high-lift airfoils, laminar flow airfoils, and robust design methods under uncertainty. His expertise also includes machine learning, AI-based global optimization, and the application of surrogate models in complex design scenarios. 🔍🧑‍💻

Conclusion

Huan Zhao’s innovative work has had a profound impact on the field of aerodynamics and optimization. His research has not only advanced the understanding of aerodynamic design but has also led to practical improvements in the development of high-performance aircraft and related technologies. He continues to drive forward cutting-edge research in aerodynamics and multidisciplinary design optimization. 🚀🌍

Publications

An efficient adaptive forward–backward selection method for sparse polynomial chaos expansion, Computer Methods in Applied Mechanics and Engineering, 2019.

Review of robust aerodynamic design optimization for air vehicles, Archives of Computational Methods in Engineering, 2019.

Effective robust design of high lift NLF airfoil under multi-parameter uncertainty, Aerospace Science and Technology, 2017.

Adaptive multi-fidelity sparse polynomial chaos-Kriging metamodeling for global approximation of aerodynamic data, Structural and Multidisciplinary Optimization, 2021.

Uncertainty-based design optimization of NLF airfoil for high altitude long endurance unmanned air vehicles, Engineering Computations, 2019.

 Efficient aerodynamic analysis and optimization under uncertainty using multi-fidelity polynomial chaos-Kriging surrogate model, Computers & Fluids, 2022.

Research on efficient robust aerodynamic design optimization method of high-speed and high-lift NLF airfoil, Acta Aeronautica et Astronautica Sinica, 2021.

Research on Novel High-Dimensional Surrogate Model-Based Aerodynamic Shape Design Optimization, Acta Aeronautica et Astronautica Sinica, 2022.

Research on novel multi-fidelity surrogate model assisted many-objective global optimization method, Acta Aeronautica et Astronautica Sinica, 2022.

Adaptive multi-fidelity polynomial chaos-Kriging model-based efficient aerodynamic design optimization method, Chinese Journal of Theoretical and Applied Mechanics, 2023.

 

Carolina Magalhães | Machine Learning | Best Researcher Award

Dr. Carolina Magalhães | Machine Learning | Best Researcher Award

Investigadora, INEGI – Instituto de Ciência e Inovação em Engenharia Mecânica e Industrial, Portugal

👩‍🔬 Carolina Magalhães is a dedicated biomedical engineer and PhD candidate with expertise in applying AI and imaging technologies to healthcare challenges. Based in Porto, Portugal, she combines her passion for modern technology with a problem-solving mindset to develop innovative solutions in skin cancer diagnostics. Carolina has worked collaboratively with clinical experts to bridge research and practical applications, contributing significantly to advancing imaging-based decision support systems.

Publication Profile

ORCID

Education

🎓 Carolina holds a PhD in Biomedical Engineering from the Faculdade de Engenharia da Universidade do Porto (2020–2024). She also completed her MSc in Biomedical Engineering at the same institution (2016–2018) and earned her Bachelor’s in Bioengineering – Biomedical Engineering from Universidade Católica Portuguesa (2013–2016).

Experience

💼 Carolina has a rich research background, currently serving as a Graduate Research Fellow at INEGI, focusing on skin lesion diagnosis using multispectral imaging. Her work spans from leveraging machine learning models for skin cancer classification to thermal and UV imaging techniques. Previously, she contributed to projects on hyperhidrosis diagnosis, prosthetic device design, and thermal image analysis for musculoskeletal disorders, collaborating with leading hospitals and research centers in Portugal.

Research Interests

🔬 Carolina is passionate about exploring artificial intelligence, machine learning, and advanced imaging technologies for healthcare applications. Her interests include developing multispectral imaging systems, improving diagnostic tools for skin cancer, and advancing infrared thermography for clinical support systems.

Awards

🏆 Carolina’s innovative work has been recognized with prestigious research grants from the Foundation for Science and Technology (SFRH/BD/144906/2019) and other funding organizations. These awards have supported her impactful contributions to biomedical engineering and healthcare innovation.

Publications

“Systematic Review of Deep Learning Techniques in Skin Cancer Detection”
BioMedInformatics, 11/2024
Read here

“Skin Cancer Image Classification with Artificial Intelligence Strategies: A Systematic Review”
Journal of Imaging, 10/2024
Read here

“Use of Infrared Thermography for Abdominoplasty Procedures in Patients with Extensive Subcostal Scars: A Preliminary Analysis”
Plast Reconstr Surg Glob Open, 06/2023
Read here

“Classic Versus Scarpa-Sparing Abdominoplasty: An Infrared Thermographic Comparative Analysis”
J Plast Reconstr Aesthet Surg, 06/2023
Read here

“Towards an Effective Imaging-Based Decision Support System for Skin Cancer”
Handbook of Research on Applied Intelligence for Health and Clinical Informatics, 10/2022
Read here

Abdelhak Bouayad | machine Learning | Young Scientist Award

Dr. Abdelhak Bouayad | machine Learning | Young Scientist Award

PhD, UM6P, Morocco

📚 Abdelhak Bouayad is a dedicated researcher in artificial intelligence and privacy from the College of Computing at Mohammed VI Polytechnic University in Ben-Guérir, Morocco. His work explores innovative methods to protect sensitive data in machine learning models, ensuring both privacy and AI effectiveness. With a robust background in machine learning, data security, and federated learning, Abdelhak aims to drive advancements in privacy-preserving AI applications.

Publication Profile

Google Scholar

Education

🎓 Abdelhak Bouayad is currently pursuing a Ph.D. in Computer Science at Mohammed VI Polytechnic University under the guidance of Dr. Ismail Berrada. He holds an M.Sc. in Big Data Analytics and Smart Systems from Sidi Mohamed Ben Abdellah University, where he developed a thesis on lip reading for speech recognition, and a B.A. in Mathematics and Computer Science from the same institution in Fès, Morocco.

Experience

👨‍💻 Abdelhak has served as a Research Assistant at the College of Computing at Mohammed VI Polytechnic University since 2019. His research delves into the intersection of machine learning, privacy, and federated learning, with a focus on protocols to secure data exchanges and safeguard privacy within machine learning systems.

Research Focus

🔍 Abdelhak’s research is centered on artificial intelligence, machine learning, and privacy-preserving mechanisms. His primary focus lies in creating algorithms and protocols that protect sensitive data in machine learning models from potential exploitation. He aims to strengthen federated learning systems to ensure robust data privacy without compromising AI performance.

Awards and Honors

🏆 Abdelhak was awarded the College of Computing Fellowship for a pre-doctoral fellowship at Mohammed VI Polytechnic University from October 2018 to October 2019. This fellowship recognizes his commitment to research excellence and contributions to privacy-preserving AI methods.

Publication Highlights

NF-NIDS: Normalizing Flows for Network Intrusion Detection Systems

On the atout ticket learning problem for neural networks and its application in securing federated learning exchanges

Investigating Domain Adaptation for Network Intrusion Detection

 

Hsiu Hsia Lin | Machine learning | Best Researcher Award

Prof. Hsiu Hsia Lin | Machine learning | Best Researcher Award

Research Fellow, Chang Gung Memorial Hospital, Taiwan

Dr. Hsiu-Hsia Lin is a dedicated Research Fellow at the Craniofacial Research Center, Chang Gung Memorial Hospital, Taiwan, and an Adjunct Assistant Professor at the Graduate Institute of Dental and Craniofacial Science, Chang Gung University. With a strong foundation in AI and 3D craniofacial image processing, her research contributes significantly to advancements in orthognathic surgery. Dr. Lin’s expertise in surgical navigation and CAD/CAM-assisted surgery is pivotal in improving craniofacial surgical outcomes. 🌟

Publication Profile

Education:

Dr. Lin earned her Ph.D. in Computer Science and Engineering from National Chung Hsing University, Taiwan, following a Master’s in Computer Science from Tunghai University. Her academic journey is deeply rooted in computer science, blending AI with craniofacial research. 🎓📚

Experience:

Dr. Lin has held key research positions, including Assistant Research Fellow and Postdoctoral Fellow at the Craniofacial Research Center, Chang Gung Memorial Hospital. Her postdoctoral work also extended to the Department of Computer Science and Engineering at National Chung Hsing University. Her extensive experience has helped bridge the gap between AI technology and clinical applications. 💼🔬

Research Focus:

Dr. Lin’s research revolves around Pattern Recognition, Artificial Intelligence, and 3D Craniofacial Image Processing. She specializes in computer-aided surgical simulation for orthognathic surgery, surgical navigation, and CAD/CAM-assisted procedures, aiming to optimize outcomes in facial surgery. 🧠💻

Awards and Honors:

Dr. Lin has received multiple recognitions for her contributions to craniofacial research and AI in surgery. Her work continues to shape modern surgical approaches, particularly in orthognathic surgery, enhancing patient outcomes. 🏆👏

Publication Top Notes:

Dr. Lin’s publications focus on integrating AI with medical applications, particularly in 3D craniofacial analysis and orthognathic surgery. Her studies offer novel methods for surgical planning, facial attractiveness assessment, and facial symmetry evaluation.

Quantification of facial symmetry in orthognathic surgery (Dec. 2024) in Comput Biol Med., cited by 5 articles. DOI

Average 3D virtual sk

eletofacial model for surgery planning (Feb. 2024) in Plast Reconstr Surg., cited by 3 articles. DOI

Facial attractiveness assessment using transfer learning (Jan. 2024) in Pattern Recognit., cited by 4 articles. DOI

Optimizing Orthognathic Surgery (Nov. 2023) in J. Clin. Med., cited by 6 articles. DOI

Single-Splint, 2-Jaw Orthognathic Surgery (Nov. 2023) in J Craniofac Surg., cited by 2 articles. DOI

Applications of 3D imaging in craniomaxillofacial surgery (Aug. 2023) in Biomed J., cited by 7 articles. DOI

Facial Beauty Assessment using Attention Mechanism (Mar. 2023) in Diagnostics, cited by 8 articles. DOI