Lirong Wang | Artifical Intelligence | Best Researcher Award

Ms. Lirong Wang | Artifical Intelligence | Best Researcher Award

professor at Suzhou University, China

Professor Lirong Wang is a distinguished researcher at Soochow University, specializing in intelligent wearable devices and information processing. She earned her B.S. and Ph.D. from Jilin University and has been serving as a professor since 2014. Her research integrates microelectronics, machine learning, and biomedical engineering, with a strong focus on signal acquisition and analysis. Professor Wang leads several interdisciplinary projects and supervises graduate students, fostering innovation and academic growth. As the Principal Investigator of a National Key R&D Program, she demonstrates outstanding leadership in advancing cutting-edge technologies. She has authored over 40 peer-reviewed publications in prestigious journals such as IEEE Transactions on Biomedical Engineering and holds more than 20 invention patents, highlighting her contributions to both academic research and practical innovation. In addition to her research work, she actively participates in the global scientific community as a journal reviewer and organizer of international conference sessions in wearable technology and computer science.

Publication Profile

Education🎓

Professor Lirong Wang received her formal education at Jilin University, one of China’s premier institutions, where she earned both her Bachelor of Science (B.S.) and Doctor of Philosophy (Ph.D.) degrees. Her academic training focused on electronic engineering and information processing, laying a strong foundation for her specialization in intelligent wearable devices. Throughout her educational journey, she developed expertise in signal acquisition technologies, microelectronics, and data analysis, which later became the core pillars of her research. During her Ph.D. studies, Professor Wang engaged in interdisciplinary work that bridged engineering, computer science, and biomedical applications, positioning her at the forefront of next-generation health monitoring technologies. Her rigorous academic background and commitment to research excellence have equipped her with the analytical skills and innovative mindset needed to lead complex scientific projects. This strong educational grounding has played a pivotal role in shaping her successful academic and research career at Soochow University.

Professional Experience 💼

Professor Lirong Wang has built a robust professional career centered on interdisciplinary research and academic leadership. Since 2014, she has served as a professor at Soochow University, where she specializes in intelligent wearable devices, signal acquisition, and biomedical information processing. Her professional experience spans leading national-level R&D programs and supervising numerous graduate students, fostering innovation in both academia and applied technology. As the Principal Investigator of a National Key Research and Development Program, she has demonstrated exceptional capability in managing large-scale, collaborative research projects. Professor Wang has authored over 40 peer-reviewed publications and holds more than 20 invention patents, reflecting a strong commitment to both theoretical advancement and technological innovation. Beyond her university role, she contributes to the global research community as a reviewer for prestigious journals and an organizer of international conference sessions, particularly in wearable technology and computer science. Her experience reflects a deep integration of research, mentorship, and scientific engagement.

Research Interest 🔬

Professor Lirong Wang has a diverse and forward-thinking research portfolio centered on the development and application of intelligent wearable devices and biomedical information processing. Her primary interests lie in signal acquisition technology, physiological data analysis, and the integration of machine learning with microelectronic systems for real-time health monitoring and diagnostics. She is particularly focused on designing wearable platforms capable of accurately capturing and interpreting complex biological signals, such as ECG and EMG, to support early disease detection and personalized healthcare. Her interdisciplinary approach merges principles from biomedical engineering, computer science, and electrical engineering, creating practical solutions for next-generation health technologies. Additionally, she explores low-power sensor systems, data fusion algorithms, and human-computer interaction interfaces within wearable technologies. Professor Wang’s research aims to bridge the gap between theoretical modeling and real-world applications, ultimately enhancing the reliability and usability of wearable systems in clinical, athletic, and daily life settings.

Research Skill🔎

Professor Lirong Wang possesses a comprehensive set of research skills that reflect her expertise in intelligent wearable technology, biomedical engineering, and data-driven signal processing. She is highly skilled in designing and developing advanced wearable systems, with a strong command of microelectronic circuit design, sensor integration, and embedded system programming. Her proficiency in signal acquisition and processing allows her to extract meaningful insights from complex physiological data such as ECG, EMG, and PPG. She is also adept at applying machine learning algorithms for pattern recognition, anomaly detection, and predictive modeling in healthcare applications. In addition, she demonstrates expertise in managing interdisciplinary research teams, coordinating large-scale projects, and supervising graduate-level research. Professor Wang is experienced in securing research funding, particularly as a Principal Investigator on national R&D initiatives. Her ability to bridge theoretical knowledge with practical innovation highlights her strong analytical, experimental, and collaborative research capabilities across multiple scientific domains.

Award and Honor🏆

Professor Lirong Wang has received several prestigious awards and honors in recognition of her outstanding contributions to research and innovation in the fields of intelligent wearable devices and biomedical engineering. As the Principal Investigator of a National Key R&D Program, she has been recognized at the national level for her leadership and scientific excellence. Her pioneering work has earned accolades from academic institutions and government agencies, including awards for Technological Innovation and Excellence in Research. She has also been honored for her contributions to patent development, with over 20 invention patents credited to her name, many of which have led to real-world applications. Professor Wang’s high-impact publications in leading journals such as IEEE Transactions on Biomedical Engineering have further contributed to her reputation as a top researcher. Additionally, she has received invitations to serve as a reviewer and session chair at international conferences, reflecting her respected status in the global scientific community.

Conclusion📝

Professor Lirong Wang is highly suitable for the Best Researcher Award. His sustained contributions to interdisciplinary research, innovation through patents, and leadership in national research programs mark him as a leading figure in the field of intelligent wearable devices and biomedical engineering. With some enhancement in international collaboration and outreach, his profile stands as exemplary in both academic and practical domains.

Publications Top Noted📚

  • End-to-End ECG Signal Compression Based on Temporal Information and Residual Compensation

    • Year: 2025

    • Journal: Circuits, Systems, and Signal Processing

  • QRS Wave Detection Algorithm of Dynamic ECG Signal Based on Improved U-Net Network

    • Year: 2025

    • Journal: ICIC Express Letters, Part B: Applications

  • TrCL-AGS: A Universal Sequential Triple-Stage Contrastive Learning Framework for Bacterial Detection With Across-Growth-Stage Information

    • Year: 2025

    • Journal: IEEE Internet of Things Journal

  • Multi-label Few-Shot Classification of Abnormal ECG Signals Using Metric Learning

    • Year: 2025

    • Journal: Circuits, Systems, and Signal Processing

  • Automated Deep Learning Model for Sperm Head Segmentation, Pose Correction, and Classification (Open Access)

    • Year: 2024

    • Journal: Applied Sciences (Switzerland)

  • Instance Segmentation of Mouse Brain Scanning Electron Microscopy Images Based on Fine-Tuning Nature Image Model

    • Year: 2024

    • Journal: Guangxue Jingmi Gongcheng / Optics and Precision Engineering

    • Citations: 1

  • Multi-label Classification of Arrhythmia Using Dynamic Graph Convolutional Network Based on Encoder-Decoder Framework

    • Year: 2024

    • Journal: Biomedical Signal Processing and Control

    • Citations: 4

  • Two-Stage Error Detection to Improve Electron Microscopy Image Mosaicking

    • Year: 2024

    • Journal: Computers in Biology and Medicine

    • Citations: 2

Prof. Tao Ye | AI Accelerator | Best Researcher Award

Prof. Tao Ye | AI Accelerator | Best Researcher Award

Prof, The Chinese University of Hong Kong, China

Dr. Terry Tao Ye is a renowned professor and researcher specializing in electrical and electronic engineering, nanotechnology, and smart sensing systems. Currently affiliated with the School of Science and Engineering at The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), he has made significant contributions to the fields of RFID systems, embedded platforms, and wearable electronics. With a rich career spanning academia and industry, Dr. Ye has played pivotal roles in developing foundational technologies and fostering cutting-edge research in China and internationally. 🌏🔬

Publication Profile

Summary of Suitability for Best Researcher Award – Prof. Tao Ye

Dr. Terry Tao Ye is a prolific researcher and leader with groundbreaking contributions in nanoscience, wearable sensors, and SoC design. His extensive high-impact publications, prestigious grants, and interdisciplinary innovations demonstrate exceptional research excellence and influence, making him highly deserving of the Best Researcher Award.

🎓 Education Background

Dr. Ye holds a Ph.D. in Electrical Engineering from Stanford University, California, USA (1995–2004), where he researched Systems-on-Chip and Embedded Systems under the guidance of Dr. Giovanni De Micheli. He earned his B.Eng. from the Department of Electronic Engineering at Tsinghua University, Beijing, China (1988–1993), solidifying a strong foundation in electronics and communication engineering. 📘🎓

💼 Professional Experience

Dr. Ye has held multiple esteemed academic and industrial positions. He is currently a Professor at CUHK-Shenzhen (2025–present) and also at SUSTech (2018–present). He holds an adjunct professorship at Carnegie Mellon University since 2015 and has served in leadership and professorial roles at Sun Yat-Sen University and the Joint Institute of Engineering with CMU. His industry experience includes significant roles at Impinj Inc. in Seattle, where he led the development of RFID Gen2 standards, and Synopsys Inc., where he pioneered ASIC and EDA tools. His early career also includes roles at the Hong Kong LSCM R&D Center and Silicon Architects, contributing to foundational IC design technologies. 🧑‍🏫💻📡

🏅 Awards and Honors

Dr. Ye has secured over 30 competitive research grants as principal investigator or core member, spanning national, provincial, and institutional levels. Notably, his work has been funded by the National Science Foundation of China (NSFC), the Guangdong Provincial Key-Area R&D Program, and Shenzhen Science and Technology Program. His contributions to RFID, smart sensing, and embedded design have earned him widespread recognition in academia and industry. 🏆📑

🔬 Research Focus

Dr. Ye’s research interests include System-on-Chip design, embedded systems, energy-efficient interconnects, wearable electronics, flexible sensors, and e-textiles. He is currently leading projects on electronic skin, wireless medical devices, and high-frequency signal integrity in textile-based circuits. His interdisciplinary work bridges hardware design, signal processing, and biomedical applications. 🧠⚙️📲

🔚 Conclusion

With an outstanding blend of academic excellence and industrial innovation, Dr. Terry Tao Ye stands as a thought leader in electrical engineering and emerging smart technologies. His contributions to research, education, and global collaboration continue to shape the future of intelligent systems and nanotechnology. 🌟📡🔋

📚 Top Publications with Details

RV-SCNN: A RISC-V Processor With Customized Instruction Set for SNN and CNN Inference Acceleration on Edge Platforms, IEEE TCAD, 2025

Cited by: 12

Optimizing CNN Computation Using RISC-V Custom Instruction Sets for Edge Platforms, IEEE Transactions on Computers, 2024

Cited by: 2

Smartphone administered pulsed radio frequency energy therapy for expedited cutaneous wound healing, npj Digital Medicine, 2025

Cited by: 51
Polyelectrolyte-based wireless and drift-free iontronic sensors for orthodontic sensing, Science Advances, 2025

Cited by: 4

Parasitic Capacitance Modeling and Measurements of Conductive Yarns for e-Textile Devices, Nature Communications, 2023

Cited by: 8

Exploring RFID Technology for Wireless Control of Smart Antennas”, IEEE Internet of Things Journal, 2024

Cited by: 24

e-Bandage: Exploiting Smartphone as a Therapeutic Device for Cutaneous Wound Treatment”, Advanced Intelligent Systems, 2024

Cited by: 39

Zeshan Khan | Artificial Intelligence| Best Researcher Award

Assoc. Prof. Dr. Zeshan Khan |Artificial Intelligence| Best Researcher Award

Associate Professor, National Yunlin University of Science and Technology, Taiwan

Dr. Zeshan Aslam Khan is an esteemed Associate Professor at the International Graduate School of Artificial Intelligence, National Yunlin University of Engineering Sciences and Technology. With a strong background in Artificial Intelligence, Image Analysis, and Recommender Systems, he has made significant contributions to academia and industry. As the Director of the PRISM Lab, he actively supervises cutting-edge AI research, fostering innovation in Smart Metering, Fingerprint Recognition, and Alzheimer’s Detection. His work is recognized globally, with prestigious awards, high-impact publications, and collaborations with leading research institutions in the UK, Ireland, Taiwan, and Pakistan. 🌍📚

Publication Profile

Scopus

🎓 Education

Dr. Khan holds a Ph.D. in Electronic Engineering (2020) with a specialization in Learning Machines for Recommender Systems. His academic journey includes an M.Sc. in Computer Systems Engineering from Halmstad University, Sweden (2010), and a B.Sc. in Computer Information Systems Engineering from UET Peshawar, Pakistan (2005). His extensive educational background has laid a strong foundation for his expertise in AI-driven systems and computational intelligence. 🎓🔬

💼 Experience

With over a decade of experience, Dr. Khan has established himself as a leading researcher and educator in Artificial Intelligence. He has served as a Visiting Researcher at the University of Birmingham (UK) and the University of Galway (Ireland). His industry collaborations include partnerships with the National Radio Telecommunication Corporation (NRTC), Pakistan, and the Future Technology Research Center, Taiwan. As an Associate Editor of the Journal of Innovative Technologies (JIT) and a reviewer for top-tier journals like IEEE Transactions on AI, he plays a crucial role in shaping AI research globally. 🌟🔍

🏆 Awards and Honors

Dr. Khan’s excellence in research and academia has been recognized through numerous accolades. He was awarded the prestigious Ph.D. Gold Medal (2020) and the Faculty Research Brilliance Award (2022). In 2023, he received the Productive Researcher Award for his outstanding publications and graduate supervisions. His work has also secured significant research grants, including the Pakistan Engineering Council (PEC) Grant and the Higher Education Commission (HEC) Grant, enabling advancements in AI and IoT applications. 🏅🔬

🔬 Research Focus

Dr. Khan’s research revolves around Artificial Intelligence, Image Classification/Segmentation, Recommender Systems, Embedded Systems, and Fractional Calculus. His groundbreaking work in explainable AI, fractional optimization, and chaotic heuristics has been widely published in high-impact Q1 journals. His innovative contributions include developing AI-powered solutions for healthcare, smart metering, and signature verification, bridging the gap between academia and industry through real-world applications. 🤖📈

📝 Conclusion

Dr. Zeshan Aslam Khan stands as a prominent figure in the field of Artificial Intelligence, with a profound impact on research, education, and industry collaborations. His dedication to AI-driven solutions, student mentorship, and high-impact publications solidifies his reputation as a leader in predictive intelligence and systems modeling. With a global research footprint and numerous accolades, he continues to drive technological advancements that shape the future of AI. 🌍🚀

📚 Publications 

Generalized fractional optimization-based explainable lightweight CNN model for malaria disease classificationComputers in Biology and Medicine, 2025 (Q1, IF: 7.0) [Link] 📖🔬

Fractional Gradient Optimized Explainable CNN for Alzheimer’s Disease DiagnosisHeliyon, 2024 (Q1, IF: 3.4) [Link] 🧠📊

Design of chaotic Young’s double slit experiment optimization heuristics for nonlinear muscle model identificationChaos, Solitons & Fractals, 2024 (Q1, IF: 5.3) [Link] 🎯💡

A gazelle optimization expedition for key term separated fractional nonlinear systems applied to muscle modelingChaos, Solitons & Fractals, 2024 (Q1, IF: 5.3) [Link] 📉⚙️

Generalized fractional strategy for recommender systems with chaotic ratings behaviorChaos, Solitons & Fractals, 2022 (Q1, IF: 5.3) [Link] ⭐🔍

Mrs. Edna Rocio Bernal Monroy | Machine Learning | Best Researcher Award

Mrs. Edna Rocio Bernal Monroy | Machine Learning | Best Researcher Award

UNAD, Colombia

Dr. Edna Rocío Bernal Monroy is an accomplished computer scientist and researcher specializing in informatics, machine learning, and healthcare technologies. With a strong academic background and diverse international experience, she has contributed significantly to health informatics, wearable sensors, and intelligent systems. Dr. Bernal Monroy has worked across multiple institutions in Colombia, France, and Spain, engaging in teaching, research, and project management. Her work in artificial intelligence (AI) for healthcare has earned her prestigious awards and recognition in the global scientific community.

Publication Profile

🎓 Education

Dr. Bernal Monroy holds a Ph.D. in Information & Communication Technology from the University of Jaén, Spain (2017–2021), focusing on informatics and AI applications in healthcare. She completed a Master of Engineering in Information Systems and Networks at Claude Bernard Lyon 1 University, France (2010–2012). Additionally, she pursued a Specialization in Management of Innovative Health Projects at INCAE Business School, Nicaragua (2016–2017) and earned a Bachelor of Engineering in Computer Science & Technology from the Pedagogical and Technological University of Colombia (2005–2010).

💼 Experience

Dr. Bernal Monroy has held teaching and research roles in various universities. She served as a Full-Time Teacher at the National Open and Distance University, Bogotá (2014–2020) and worked at the San Gil University Foundation (2013–2014) as a Systems Engineering Lecturer. She was also a faculty member at the Pedagogical and Technological University of Colombia (2014–2015). Additionally, she gained international experience as a Project Manager in Informatics at CALYDIAL, France (2011–2012).

🏆 Awards and Honors

Dr. Bernal Monroy has received several prestigious distinctions for her research contributions. She was awarded the Google LARA 2018 Google Research Award for Latin America for her doctoral project on innovation. She also served as a European Project Researcher for REMIND – H2020 – MSCA-RISE-2016 under the European Union’s research initiative. Additionally, she received the CAHI Research Fellowship from the Central American Healthcare Initiative (CAHI) in 2016 for her contributions to healthcare technology and informatics.

🔬 Research Focus

Dr. Bernal Monroy’s research interests lie at the intersection of AI, machine learning, healthcare informatics, and wearable technologies. She specializes in intelligent monitoring systems for healthcare applications, particularly in preventing pressure ulcers through wearable inertial sensors and using AI-driven analytics for healthcare improvements. Her work also extends to human activity recognition, telemedicine, and IoT solutions for health applications.

🏁 Conclusion

Dr. Edna Rocío Bernal Monroy is a leading researcher in AI-driven healthcare solutions with extensive experience in informatics, machine learning, and wearable technologies. Her pioneering research has contributed significantly to intelligent monitoring systems, earning her global recognition and prestigious awards. Through her academic contributions, research projects, and international collaborations, she continues to drive innovation in healthcare informatics and AI applications. 🚀

📚 Publications

Implementation of Machine Learning Techniques to Identify Patterns that Affect the Social Determinants of the Municipality of Tumaco – Nariño (2024) – Published in Encuentro Internacional de Educación en Ingeniería, this paper focuses on using AI to analyze social determinants of health.

Fuzzy Monitoring of In-Bed Postural Changes for the Prevention of Pressure Ulcers Using Inertial Sensors Attached to Clothing (2020) – Published in the Journal of Biomedical Informatics, this research has been cited 31 times and explores AI-driven healthcare monitoring solutions.

Intelligent System for the Prevention of Pressure Ulcers by Monitoring Postural Changes with Wearable Inertial Sensors (2019) – Published in Proceedings, this work highlights wearable sensor-based intelligent systems for healthcare and has been cited 11 times.

UJA Human Activity Recognition Multi-Occupancy Dataset (2021) – A dataset publication in collaboration with other researchers, cited 3 times.

Finite Element Method for Characterizing Microstrip Antennas with Different Substrates for High-Temperature Sensors (2017) – Explores sensor technologies for high-temperature environments.

Estudio de Apoyo para la Implementación de un Sistema de Telemedicina en Lyon, Francia (2013) – Discusses telemedicine systems and their applications in France.

QIANG QU | Artificial Intelligence Award | Best Researcher Award

Prof. QIANG QU | Artificial Intelligence Award | Best Researcher Award

PROFESSOR, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, China

Dr. Qiang Qu is a distinguished professor and a leading researcher in blockchain, data intelligence, and decentralized systems. He serves as the Director of the Guangdong Provincial R&D Center of Blockchain and Distributed IoT Security at the Shenzhen Institutes of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS). Additionally, he holds a professorship at Shenzhen University of Advanced Technology and has previously served as a guest professor at The Chinese University of Hong Kong (Shenzhen). Dr. Qu has also contributed as the Director and Chief Scientist of Huawei Blockchain Lab. With a strong international academic presence, he has held research positions at renowned institutions such as ETH Zurich, Carnegie Mellon University, and Nanyang Technological University. His pioneering work focuses on scalable algorithm design, data sense-making, and blockchain technologies, making significant contributions to AI, data systems, and interdisciplinary studies.

Publication Profile

🎓 Education

Dr. Qiang Qu earned his Ph.D. in Computer Science from Aarhus University, Denmark, under the supervision of Prof. Christian S. Jensen. His doctoral research was supported by the prestigious GEOCrowd project under Marie Skłodowska-Curie Actions. He further enriched his academic journey as a Ph.D. exchange student at Carnegie Mellon University, USA. He holds an M.Sc. in Computer Science from Peking University, China, and a B.S. in Management Information Systems from Dalian University of Technology.

💼 Experience

Dr. Qu has a diverse professional background, reflecting his global expertise. Since 2016, he has been a professor at SIAT, leading groundbreaking research in blockchain and distributed IoT security. He also served as Vice Director of Hangzhou Institutes of Advanced Technology (SIAT’s Hangzhou branch). Prior to this, he was an Assistant Professor and the Director of Dainfos Lab at Innopolis University, Russia. His research journey includes being a visiting scientist at ETH Zurich, a visiting scholar at Nanyang Technological University, and a research fellow at Singapore Management University. He also gained industry experience as an engineer at IBM China Research Lab.

🏅 Awards and Honors

Dr. Qu has received several national and international research grants, recognizing his impactful contributions to blockchain and AI-driven data intelligence. He is a prominent editorial board member of the Future Internet Journal and serves as a guest editor for multiple high-impact journals. As an active contributor to the research community, he has been a TPC (Technical Program Committee) member for prestigious conferences and regularly reviews top-tier AI and data systems journals.

🔬 Research Focus

Dr. Qu’s research interests revolve around data intelligence and decentralized systems, with a strong focus on blockchain, scalable algorithm design, and data-driven decision-making. His work has been instrumental in developing efficient data parallel approaches, AI-driven network analysis, and cross-blockchain data migration techniques. His interdisciplinary contributions bridge AI, IoT security, and geospatial analytics, driving innovation in secure and intelligent computing.

🔚 Conclusion

Dr. Qiang Qu stands as a thought leader in blockchain and data intelligence, combining academic excellence with real-world impact. His contributions to AI-driven decentralized systems and scalable data solutions continue to shape the fields of computer science and IoT security. His extensive research collaborations, editorial roles, and international experience make him a key figure in advancing secure and intelligent computing technologies. 🚀

📚 Publications

SNCA: Semi-supervised Node Classification for Evolving Large Attributed Graphs – IEEE Big Data Mining and Analytics (2024). Cited in IEEE 📖

CIC-SIoT: Clean-Slate Information-Centric Software-Defined Content Discovery and Distribution for IoT – IEEE Internet of Things Journal (2024). Cited in IEEE 📖

Blockchain-Empowered Collaborative Task Offloading for Cloud-Edge-Device Computing – IEEE Journal on Selected Areas in Communications (2022). Cited in IEEE 📖

On Time-Aware Cross-Blockchain Data MigrationTsinghua Science and Technology (2024). Cited in Tsinghua University 📖

Few-Shot Relation Extraction With Automatically Generated Prompts – IEEE Transactions on Neural Networks and Learning Systems (2024). Cited in IEEE 📖

Opinion Leader Detection: A Methodological Review – Expert Systems with Applications (2019). Cited in Elsevier 📖

Neural Attentive Network for Cross-Domain Aspect-Level Sentiment ClassificationIEEE Transactions on Affective Computing (2021). Cited in IEEE 📖

Efficient Online Summarization of Large-Scale Dynamic Networks –  IEEE Transactions on Knowledge and Data Engineering (2016). Cited in IEEE 📖