Mr. John de Britto Chinnappan | Computer Science | Editorial Board Member

Mr. John de Britto Chinnappan | Computer Science | Editorial Board Member

Saveetha Engineering College| India

Dr. C. John De Britto is a dedicated researcher in Electrical and Electronics Engineering with a strong focus on power electronics, renewable energy systems, electric drives, optimization algorithms, and intelligent control strategies. His research work explores innovative solutions for improving power quality, enhancing the efficiency of renewable energy integration, and advancing smart energy systems. With contributions spanning image enhancement techniques, hybrid renewable systems, DC–DC converter architectures, electric vehicle impact mitigation, and intelligent control for photovoltaic systems, he brings a multidisciplinary approach bridging conventional power engineering with modern computational intelligence. His scholarly output includes 14 Scopus-indexed documents that have collectively received 40 citations with an h-index of 4 on Scopus. Additionally, his Google Scholar profile reflects 50 citations, an h-index of 4, and an i10-index of 1, highlighting the growing influence and visibility of his work. His publications demonstrate a strong commitment to developing sustainable engineering solutions, especially in areas such as quasi Z-source converters, hybrid renewable energy design, embedded platforms, fault recognition in industrial motors, and bio-inspired optimization for control systems. Dr. De Britto’s research impact is evident across peer-reviewed journals, international conferences, and interdisciplinary collaborations, with several studies addressing modern challenges such as electric vehicle charging impacts, microgrid performance, and automation for safety-critical applications. His continuous contributions to energy systems, computational approaches, and power conversion technologies position him as an emerging academic voice in renewable and intelligent power engineering research.

Profile

Scopus | ORCID | Google Scholar

Featured Publications

Venkatesh, S., De Britto, C. J., Subhashini, P., & Somasundaram, K. (2022). Image enhancement and implementation of CLAHE algorithm and bilinear interpolation. Cybernetics and Systems, 1–13.

Pradeep, M., Sathishkumar, S., & Subramanian, A. T. S. (2019). Recognition of fault and security of three phase induction motor by means of programmable logic controller. IOP Conference Series: Materials Science and Engineering, 623, 012017.

Yuvaraj, T., Prabaharan, N., De Britto, C. J., Thirumalai, M., Salem, M., & others. (2024). Dynamic optimization and placement of renewable generators and compensators to mitigate electric vehicle charging station impacts using the spotted hyena optimization algorithm. Sustainability, 16(19), 8458.

De Britto, C. J., Nagarajan, S., & Kumar, R. S. (2023). Effective design and implementation of hybrid renewable system using convex programming. International Journal of Green Energy, 20(13), 1473–1487.

De Britto, C. J., & Nagarajan, S. (2018). High performance quasi Z-source resonant converter with hybrid energy resources for rural electrification. International Journal of Engineering and Advanced Technology, 8(2C2), 132–135.

Mr. Junde Lu | Artificial Neural Networks | Best Researcher Award

Mr. Junde Lu | Artificial Neural Networks | Best Researcher Award

Beijing Information Science and Technology University | China

Mr. Junde Lu is a promising early-career researcher specializing in optical communication systems and signal processing, with a focus on developing efficient equalization algorithms for high-speed data transmission. His research interests center around enhancing the performance and reliability of optical communication links through advanced digital signal processing and AI-empowered equalization methods. He has contributed to the design of low-complexity receiver-side equalizers and has explored the potential of machine learning in nonlinear compensation for coherent optical systems. His scholarly contributions have been published in reputable international journals and conferences, particularly within the fields of photonics and communication technology. Junde Lu has authored and co-authored several scientific documents, with a citation record demonstrating growing recognition in his domain. According to Scopus and Google Scholar metrics, his academic record includes 13 research documents, 1 citation, and an h-index of 1, highlighting his emerging influence in optical communication research. His collaborative works with distinguished researchers underscore his commitment to advancing next-generation high-speed optical transmission technologies.

Profile

Scopus

Featured Publications

Lu, J., Sun, Y., Qin, J., & Lu, G.-W. (2025). A low-complexity receiver-side lookup table equalization method for high-speed short-reach IM/DD transmission systems. Photonics.

Chen, L., Sun, Y., Shi, J., Lu, J., & Qin, J. (2025). Exploring 400 Gbps/λ and beyond with AI-accelerated silicon photonic slow-light technology. Photonics.

Mr. Sachin Sravan Kumar Komati | Deep Learning | Best Researcher Award

Mr. Sachin Sravan Kumar Komati | Deep Learning | Best Researcher Award

AI Engineer | Florida International University | United States

Sachin Sravan Kumar Komati is an accomplished researcher in Artificial Intelligence and Machine Learning, specializing in biomedical applications, particularly in gastrointestinal disease diagnosis, cancer prognosis, and postoperative complication prediction. His research integrates deep learning, computer vision, and multimodal AI frameworks to develop intelligent healthcare solutions. He has contributed significantly to the fields of predictive analytics, medical imaging, and surgical AI, creating advanced models using LSTM, Vision Transformers, and Autoencoders for enhanced diagnostic precision. His works explore AI-driven insights in clinical and imaging datasets, focusing on improving real-time disease detection and patient-specific treatment strategies. Sachin’s scholarly contributions include numerous peer-reviewed publications in reputed international journals such as PLOS One, Gastroenterology, Gastrointestinal Endoscopy, Critical Care Medicine, and the Journal of Clinical Oncology. His research has earned global recognition through multiple conference acceptances, including at ACG, AASLD, and UEG Week. According to Google Scholar, he has received 2 citations, with an h-index of 1 and an i10-index of 0, reflecting his emerging influence in AI-driven healthcare research. His Scopus metrics also indicate growing visibility and scholarly impact. Sachin’s research continues to advance the integration of artificial intelligence into clinical decision-making and medical imaging, aiming to bridge the gap between AI innovation and patient-centered healthcare.

Profile

Google Scholar | ORCID

Featured Publications

Boppana, S. H., Tyagi, D., Komati, S. S. K., Boppana, S. L., Raj, R., & Mintz, C. D. (2025). AI-delirium guard: Predictive modeling of postoperative delirium in elderly surgical patients. PLOS One, 20(6), e0322032.

Boppana, S. H., Thota, M., Maddineni, G., Komati, S. S. K., Aakash, F., & Dang, A. K. (2025). Enhancing gastrointestinal bleeding detection in wireless capsule endoscopy using convolutional autoencoders. American College of Gastroenterology, 120(10S2).

Boppana, S. H., Chitturi, R. H., Komati, S. S. K., Raj, R., & Mintz, C. D. (2025). DiabCompSepsAI: Integrated AI model for early detection and prediction of postoperative complications in diabetic patients using a Random Forest Classifier. Journal of Clinical Medicine, 14(20), 7173.

Boppana, S. H., Thota, M., Maddineni, G., Komati, S. S. K., & Mintz, C. D. (2025). Predictive modeling of GI disease: GastroEndo-Seq for progression and outcome forecasting. Gastroenterology, 120(10S2).

Boppana, S. H., Thota, M., Maddineni, G., Komati, S. S. K., & Mintz, C. D. (2025). Vision Transformer-based framework for risk stratification and prognostic assessment in gastrointestinal lesion management. Gastrointestinal Endoscopy, 120(10S2).

Prof. Dr. Cesar Hernando Valencia Niño | Evolutionary Computation | Best Researcher Award

Prof. Dr. Cesar Hernando Valencia Niño | Evolutionary Computation | Best Researcher Award

Prof. Dr. Cesar Hernando Valencia Niño | Director of Master on Data Analytics and Intelligent Systems | Santo Tomas University Bucaramanga | Colombia

Cesar Hernando Valencia Niño is a distinguished researcher in artificial intelligence, robotics, mechatronics, and intelligent control systems. His work integrates machine learning algorithms with mechanical and electrical engineering to develop predictive, inferential, and adaptive systems applied to robotics, biomedical devices, industrial automation, and human–machine interaction. As leader of a Category A research group, he has contributed significantly to interdisciplinary applications of AI in areas such as prosthetics, echo state networks, autonomous systems, and biomedical forecasting. His portfolio includes contributions to the advancement of industrial robotics, machine design, neuroevolutionary computation, magnetorheological systems, and control architectures for UAVs and prosthetics. With active participation in 25 research and innovation projects, he has produced 17 peer-reviewed journal articles, 5 book chapters, 12 industrial prototypes, 7 documented innovations, and 5 patents. He is also a recognized reviewer of top-tier indexed journals and has directed theses across undergraduate to doctoral levels. Valencia Niño has presented his work in more than 30 knowledge dissemination events, demonstrating strong engagement in academic and scientific communities. His citation impact reflects growing international recognition: Scopus reports 45 citations from 44 documents with 17 indexed publications and an h-index of 4, while Google Scholar attributes 96 citations, an h-index of 6, and an i10-index of 2. His research continues to bridge artificial intelligence with engineering solutions for complex, real-world challenges, emphasizing innovation, automation, and intelligent system design.

Publication Profile

Scopus | ORCID | Google Scholar

Featured Publications

  • Valencia, C. H., Vellasco, M. M. B. R., & Figueiredo, K. (2023). Echo State Networks: Novel reservoir selection and hyperparameter optimization model for time series forecasting. Neurocomputing, 545, 126317.

  • Valencia Niño, C. H. (2011). Modelo de optimización en la gestión de inventarios mediante algoritmos genéticos. ITECKNE: Innovación e Investigación en Ingeniería, 8(2), 156–162.

  • Valencia, C. H., Vellasco, M. M. B. R., & Figueiredo, K. T. (2014). Trajectory tracking control using echo state networks for the CoroBot’s arm. In Robot Intelligence Technology and Applications 2.

  • Valencia, C. H., Vellasco, M., Tanscheit, R., & Figueiredo, K. T. (2015). Magnetorheological damper control in a leg prosthesis mechanical. In Robot Intelligence Technology and Applications 3.

  • Valencia Niño, C. H., & Dutra, M. S. (2010). Estado del arte de los vehículos autónomos sumergibles alimentados por energía solar. ITECKNE, 7(1), 46–53.

 

Zaid Allal | Machine Learning | Best Researcher Award

Dr. Zaid Allal | Machine Learning | Best Researcher Award

Dr. Zaid Allal | LISTIC (Laboratory of Computer Science, Systems, Information and Knowledge Processing) | Morocco

Zaid Allal is a Moroccan researcher and doctoral candidate in computer science specializing in artificial intelligence applications for energy systems. With a solid foundation in mathematics and computing, he has built his academic and professional journey through a blend of education, research, and teaching. His work integrates machine learning with renewable energy systems, focusing on optimizing hydrogen energy technologies. Currently affiliated with the University of Savoie Mont Blanc and the LISTIC Laboratory in France, his research explores intelligent solutions for predictive maintenance, fault detection, and system stability. His dedication lies in bridging sustainable energy with advanced AI technologies.

Publication Profile

Scopus

ORCID

Google Scholar

Education Background

Zaid Allal holds a Master’s degree in Advanced Information Technology and Computing Applications from the University of Franche-Comté in France, graduating with distinction and honors. He earned a Bachelor’s degree in Mathematics and IT Systems from Mohammed First University in Oujda. Before his higher education, he received his Baccalaureate in Physical Sciences and Chemistry with honors. Additionally, he completed a certified training in Mathematics Education, coordinated with the Moroccan Ministry of Education. His strong academic background in both theoretical and applied domains provides a firm base for his research in AI and renewable energy integration.

Professional Experience

Zaid has over seven years of experience in mathematics education under the Moroccan Ministry of Education. Transitioning into research, he engaged in machine learning projects focused on renewable energy systems and hydrogen technologies at the University of Franche-Comté. Currently, he is a Ph.D. researcher at the University of Savoie Mont Blanc and contributes to the LISTIC Laboratory. His projects span predictive analytics, power consumption forecasting, and anomaly detection in smart grids. His work integrates theoretical AI models with practical energy sector challenges, contributing to research publications, international conferences, and innovative academic-industrial collaborations.

Awards and Honors

Zaid Allal has consistently demonstrated academic excellence throughout his career, receiving distinction and honors during both his undergraduate and postgraduate studies. His Master’s program recognized his outstanding performance with academic distinction. In addition to his formal qualifications, he has participated in several high-impact training initiatives, including NASA Space Apps competitions and AI ambassador programs. These accolades reflect his commitment to excellence in education, innovation, and technological advancement, highlighting his dedication to exploring and applying cutting-edge artificial intelligence methods within the energy and environmental sectors.

Research Focus

Zaid’s research centers on applying machine learning and deep learning techniques to address challenges in renewable energy systems and the hydrogen value chain. He focuses on areas such as predictive maintenance, fault and anomaly detection, power forecasting, and system optimization. His expertise extends to smart grids, hydrogen storage systems, and photovoltaic energy solutions. He employs explainable AI and reinforcement learning to develop sustainable, efficient, and interpretable models. By combining theoretical AI approaches with real-world energy applications, he aims to contribute to the advancement of intelligent and sustainable energy infrastructures.

Top  Publications

Explainable AI of Tree-Based Algorithms for Fault Detection and Diagnosis in Grid-Connected PV Systems
Published Year: 2025
Citation: 14

Review on ML Applications in Hydrogen Energy Systems
Published Year: 2025
Citation: 11

Power Consumption Prediction in Warehouses Using Variational Autoencoders and Tree-Based Regression Models
Published Year: 2024
Citation: 9

Efficient Health Indicators for RUL Prediction of PEM Fuel Cells
Published Year: 2024
Citation: 7

Machine Learning Algorithms for Solar Irradiance Prediction: A Comparative Study
Published Year: 2024
Citation: 6

Conclusion

Zaid Allal exemplifies the fusion of academic excellence, professional dedication, and research-driven innovation. With a strong foundation in mathematics and computing, he has evolved into a researcher committed to applying artificial intelligence in solving pressing energy challenges. His work across renewable energy, hydrogen systems, and smart grid technologies positions him as a valuable contributor to the evolving energy-tech landscape. Through ongoing research, publication, and collaboration, he continues to push the boundaries of sustainable innovation, striving to create data-driven and explainable solutions for the future of energy management and system optimization.

Mr. Abdullah Al Mamun | Deep Learning | Young Scientist Award

Mr. Abdullah Al Mamun | Deep Learning | Young Scientist Award

Lecturer, Dhaka University of Engineering & Technology (DUET), Gazipur, Bangladesh

Abdullah Al Mamun is a passionate researcher and academic professional specializing in Internet of Things (IoT), Machine Learning 🤖, and Explainable Artificial Intelligence (XAI). Currently pursuing his Master of Science in Engineering at Dhaka University of Engineering & Technology (DUET), Gazipur, he brings a vibrant combination of theoretical knowledge and hands-on research experience. His dynamic involvement in projects across sustainability, computer vision 🧠, and intelligent systems has positioned him as a promising contributor to the technology and research domain.

Publication Profile

ORCID

🎓 Education Background

Abdullah Al Mamun is presently pursuing his M.Sc. in Computer Science and Engineering at DUET, Gazipur (since October 2024), where he has already completed his Bachelor of Science in Computer Science and Engineering with distinction in 2024 🎓. His consistent academic journey showcases his dedication to computing, innovation, and advanced research.

💼 Professional Experience

Mamun is currently working as a Lecturer at the Department of CSE, Model Institute of Science and Technology, Gazipur, while also serving as a part-time Research Assistant in the Multimedia Signal & Image Processing research group at Woosong University, South Korea 🌏. With three years of tutoring experience at ACME DUET Admission Coaching Center, and two internships in web development and CMS technologies, he has gained broad teaching, mentoring, and development experience across various platforms 🖥️. His administrative roles in DUET Career & Research Club and DUET Computer Society also underscore his leadership and community contributions.

🏆 Awards and Honors

Abdullah has been recognized for his academic and problem-solving excellence. He earned the “Second Runner-Up” at BEYOND THE METRICS-2023 hosted by IUT (OIC), and “Runner-Up” at the Intra DUET Programming Contest (IDPC) 2022 🏅. He has actively participated in events like NASA Space App Challenge 2024 and DUET TECH FEST-2023, reflecting his engagement in competitive and innovation-driven activities 🚀.

🔬 Research Focus

Abdullah’s core research interests lie in IoT and sustainability, Machine Learning, Computer Vision, Explainable AI, and Reinforcement Learning 🧠📡. He has been instrumental in implementing real-world projects such as IoT-based energy monitoring systems and child safety monitoring, defect detection via XAI, and skin cancer classification using optimized deep learning models. His collaborative projects with global research teams exhibit his strong contribution to the evolving field of intelligent systems and digital transformation.

✅ Conclusion

With an impressive blend of academic rigor, technical skills, and collaborative research experience, Abdullah Al Mamun is making impactful strides in the field of computer science 🧩. His work exemplifies innovation, sustainability, and intelligence in engineering systems. He continues to grow as a researcher dedicated to contributing to global scientific advancements 🌐.

📚 Top Publications 

  1. Developed an IoT-based Smart Solar Energy Monitoring System for Environmental Sustainability3rd International Conference on Advancement in Electrical and Electronic Engineering, 2024.
    Cited by: 7 articles 📑

  2. Developing an IoT-based Child Safety and Monitoring System: An Efficient ApproachIEEE 26th International Conference on Computer and Information Technology (ICCIT), 2023.
    Cited by: 13 articles 🔐

  3. Software Defects Identification: Results Using Machine Learning and Explainable Artificial Intelligence TechniquesIEEE Journal, 2024.
    Cited by: 15 articles ⚙️

  4. IoT-Based Solutions for Uneven Roads and Balanced Vehicle Systems Using YOLOv8MDPI Sensors Journal, 2023.
    Cited by: 10 articles 🚗

  5. Optimizing Deep Learning for Skin Cancer Classification: A Computationally Efficient CNN2nd NCIM Conference, Bangladesh, 2024.
    Cited by: 5 articles 🧬

  6. Enhancing DBSCAN Dynamically: A Novel Approach to Parameter Initialization and Outlier ReductionBachelor Thesis, DUET, 2024.
    Cited by: 3 articles 🔍

 

Mr. Muhammad Tauqeer Iqbal | Machine Learning | Best Researcher Award

Mr. Muhammad Tauqeer Iqbal | Machine Learning | Best Researcher Award

Mr. Muhammad Tauqeer Iqbal , Yangzhou University, China

Iqbal Muhammad Tauqeer is a passionate researcher and master’s student at Yangzhou University, China , specializing in the domain of Machine Learning 🤖. With a solid foundation in both industry and academia, he has combined practical management experience with cutting-edge AI research. His dedication to data science applications and computer vision has led to a notable publication recognized as a best paper, showcasing his potential in the rapidly evolving tech landscape 🌟.

Professional Profile

ORCID

🎓 Education Background

Iqbal is currently pursuing his Master’s degree at Yangzhou University, China 📚, where his academic focus is on machine learning and its applications in computer vision. His academic pursuits have been driven by a commitment to advancing AI-driven solutions in environmental monitoring and digital recognition systems.

💼 Professional Experience

Before his transition into research, Iqbal gained valuable industry experience as an Assistant Production Manager at OPPO Mobile Company Pakistan 📱 for over two years. This role provided him with deep insights into production workflows and industry standards, bridging the gap between theoretical learning and practical application.

🏆 Awards and Honors

Iqbal’s research has already earned accolades, with his paper titled “A Transfer Learning-Based VGG-16 Model for COD Detection in UV–Vis Spectroscopy” being recognized as a Best Paper 🥇. This early recognition is a testament to the impact and novelty of his contributions to AI-powered environmental diagnostics.

🔬 Research Focus

His research interests lie primarily in Machine Learning, Deep Learning, Transfer Learning, and Computer Vision 🧠📊. He is particularly focused on applying these techniques to UV–Vis Spectroscopy and digital display recognition. He is currently working on a second research project that extends his work in pattern recognition and visual AI.

🔚 Conclusion

With a unique blend of industrial management experience and academic rigor, Iqbal Muhammad Tauqeer is emerging as a promising contributor to the field of Artificial Intelligence. His work in machine learning models for environmental monitoring reflects not only his technical skills but also his commitment to impactful innovation 🌍🔍.

📚 Publication Top Note

  1. Title: A Transfer Learning-Based VGG-16 Model for COD Detection in UV–Vis Spectroscopy
    Journal: Journal of Imaging
    Publisher: MDPI
    Published Year: 2025

 

Mr. Lurui Wang | Machine Learning | Best Researcher Award

Mr. Lurui Wang | Machine Learning | Best Researcher Award

Mr. Lurui Wang, Univeristy of toronto Mind lab, Canada.

Lurui Wang is a passionate and innovative researcher in the field of mechanical engineering, with a strong interdisciplinary interest in robotics, artificial intelligence, and sensor technologies. Currently pursuing his Bachelor of Science in Mechanical Engineering at the University of Toronto, he combines practical experience, academic excellence, and a drive for impactful innovation. With an impressive GPA of 3.75 and extensive involvement in machine learning and design projects, Lurui has contributed to multiple high-impact research areas such as cold spray coatings, aerosol systems for medical applications, and intelligent object detection models. His leadership skills are evident through various team-led design and AI projects, as well as his industry internship with Baylis Med Tech, where he made significant technical contributions.

Professional Profile

ORCID

🎓 Education Background

Lurui Wang began his academic journey at the University of Toronto in September 2020 and is expected to graduate in April 2025 with a Bachelor of Science in Mechanical Engineering. His curriculum includes key subjects such as Mechanical Engineering Design, Mechatronics, Fluid Mechanics, and Solid Mechanics, enhanced by the Professional Experience Year (PEY Co-op). He also undertook summer courses at Xiamen University in accounting, microeconomics, and macroeconomics, reflecting his interdisciplinary interests.

💼 Professional Experience

Lurui’s hands-on experience spans several high-impact projects and internships. He has been involved in developing deep learning models for acoustic emission sensor data in cold spray coatings, advanced object detection through SparseNetYOLOv8, and designing heater systems for aerosol deposition studies. Notably, at Baylis Med Tech, he served as an Equipment Engineer, leading the design of a cable coiling machine, improving manufacturing efficiency, and reducing operational costs. He has also led student design projects in robotics, AI traffic signal detection, and mechanical systems such as gearboxes and milling machines, showcasing his engineering versatility.

🏆 Awards and Honors

Lurui Wang’s dedication has been recognized through multiple accolades, including the Certified SolidWorks Professional (CSWP) in 2022 and Associate (CSWA) in 2021. In 2024, he earned a Kaggle Silver Medal in the “Eedi – Mining Misconceptions in Mathematics” competition, ranking among the top 67 out of 1,446 participants, underscoring his strong data science capabilities.

🔬 Research Focus

Lurui’s research focuses on the intersection of mechanical systems, intelligent computation, and biomimicry. His works explore robotic optimization using insect-inspired mechanisms, machine learning integration in engineering systems, sensor fusion for predictive manufacturing, and vision-based detection models using YOLO architecture enhancements. His projects aim to address real-world challenges in autonomous systems, medical technology, and intelligent manufacturing, driven by simulation tools, programming, and algorithmic innovation.

🔚 Conclusion

Lurui Wang stands out as a dynamic and driven early-career researcher, blending engineering design, data science, and real-world application with academic rigor. His proactive approach, technical skillset, and collaborative mindset mark him as a rising talent in the fields of intelligent mechanical systems and applied machine learning.

📚 Top Publications with Notes

  1. Design and Optimization of Monopod Robots for Continuous Vertical Jumping: A Novel Hopping Mechanism Inspired by Froghoppers and Grasshoppers
    • Authors: Suhang Xu, Feihan Li, Lurui Wang, Yujing Fu

    • Published Year: 2024

    • Journal: Proceedings of MLPRAE 2024

    • DOI: 10.1145/3696687.3696695

  2. SparseNetYOLOv8: Integrating Vision Transformers and Dynamic Probing for Enhanced Sparse Object Detection
    • Authors: Lurui Wang, Yanfeng Lyu

    • Published Year: 2024

    • Conference: 2024 International Conference on Computer Vision and Image Processing (CVIP 2024)

    • DOI: 10.1117/12.3058039

  3. A Machine Learning Approach for Predicting Particle Spatial, Velocity, and Temperature Distributions in Cold Spray Additive Manufacturing
    • Authors: Lurui Wang, Mehdi Jadidi, Ali Dolatabadi

    • Published Year: 2025

    • Conference: Applied Sciences

    • DOI: 10.3390/app15126418

Assoc. Prof. Dr. Feng Xie | intelligence systems | Best Researcher Award

Assoc. Prof. Dr. Feng Xie | intelligence systems | Best Researcher Award

School of Information Science and Technology / Sanda University, China

Dr. Feng Xie is an accomplished Associate Professor at the School of Information Science and Technology, Sanda University, China . With a career that bridges academia and industry, he has been at the forefront of intelligent transportation systems, urban mobility, and smart city innovations. As a tech entrepreneur and researcher, he has led over 500 consultancy projects globally and holds numerous patents and software copyrights. His expertise spans traffic management, AI applications, IoT, and big data analytics, with significant contributions that have earned him prestigious awards and talent program recognitions.

Publication Profile

ORCID

🎓 Education Background:

Dr. Xie earned his Ph.D. from Nanyang Technological University, Singapore , in 2002 and completed his postdoctoral research at Tongji University, China , in 2005. His academic foundation is rooted in transportation engineering, computer science, and intelligent systems, providing the basis for his interdisciplinary approach to research and technology deployment.

💼 Professional Experience:

Currently serving as an Associate Professor at Shanghai Shanda University, Dr. Xie has also been the founder of Shanghai Van-Chance Trans. Technologies (2010–2022), where he led large-scale smart transportation projects across Asia. He worked extensively with government and industry partners, such as Singapore’s Land Transport Authority and IKEA, and directed projects like the world’s largest underground parking facility. He has also held leadership roles in cross-border technology associations and has developed systems used in cities like Beijing, Hangzhou, and Wuhan.

🏆 Awards and Honors:

Dr. Feng Xie has been recognized with several prestigious awards, including the IES Engineering Achievement Award in 2004 for his contributions to Singapore’s i-Transport project and the Shanghai Science Progress Award in 2013. He has also been selected for elite talent programs such as the Shanghai “3310” Overseas High-level Talent Program and Nanjing “321” Leading Technology Entrepreneurship Talent Program. His innovative work has resulted in 5 patents and 9 software copyrights, solidifying his impact in both academic and applied research domains.

🧠 Research Focus:

Dr. Xie’s research is centered on Intelligent Transportation Systems (ITS), AI-driven traffic management, smart parking, indoor positioning, urban planning, and emerging tech applications in IoT and quantitative finance. His efforts in traffic simulation, traveler behavior modeling, and data-driven urban development have influenced policies and technologies in smart mobility across multiple major cities. He has collaborated with Tongji University, published in Transportation Research Board journals, and contributed to key projects with global relevance.

✅ Conclusion:

With a unique blend of academic rigor and entrepreneurial innovation, Dr. Feng Xie exemplifies leadership in intelligent systems and sustainable urban technology 🌍. His work has profoundly shaped how modern cities approach mobility, data analytics, and smart infrastructure development. He continues to push the boundaries of AI, transportation science, and cross-border collaboration, earning him a rightful nomination for the Best Researcher Award.

📚 Top Publications :

PDCG-Enhanced CNN for Pattern Recognition in Time Series Data
Journal: Elsevier – Expert Systems with Applications
Year: 2022 | Cited by: 38 articles

Modeling Traveler Behavior Using Hybrid RP/SP Data and Path-Size Logit Models
Journal: Transportation Research Record: Journal of the Transportation Research Board
Year: 2012 | Cited by: 65 articles

AI-Based Traffic Incident Management Systems: A Case Study of Singapore’s i-Transport Project
Journal: IEEE Transactions on Intelligent Transportation Systems
Year: 2014 | Cited by: 79 articles

Urban Traffic Simulation Using GPS Data Fusion and Adaptive Signal Optimization
Journal: Journal of Transportation Engineering, ASCE
Year: 2016 | Cited by: 45 articles

Smart Parking Systems Powered by IoT and AI: A Case Study of Guinness Record Facility
Journal: Sensors (MDPI)
Year: 2020 | Cited by: 54 articles

Dr. Jiaheng Peng | Data Science | Best Researcher Award

Dr. Jiaheng Peng | Data Science | Best Researcher Award

PhD Candidate, East China Normal University, China

Jiaheng Peng is a dedicated Ph.D. candidate at East China Normal University, specializing in Open Source Ecosystem, Natural Language Processing, and Evaluation Science. With a strong academic record and a passion for research, he has contributed significantly to understanding Open Source dataset evaluation. His work bridges the gap between academic research and real-world Open Source applications, earning him recognition in the field.

Publication Profile

Google Scholar

🎓 Academic Background

Jiaheng Peng is pursuing his Ph.D. at East China Normal University, focusing on innovative methods to assess Open Source datasets. His research emphasizes citation network analysis, evaluating long-term dataset usage, and developing advanced Natural Language Processing (NLP) models. His academic journey is marked by high-impact publications in top-tier journals and international conferences, reflecting his expertise in computational analysis and data evaluation.

👨‍💼 Professional Experience

Although Jiaheng does not have industry consultancy or ongoing research projects, his scholarly contributions have made a substantial impact on Open Source ecosystem analysis. He actively publishes in high-impact scientific journals and conferences, ensuring that his findings help enhance dataset evaluation metrics. His commitment to advancing data-driven methodologies sets a solid foundation for future research in Open Source analysis.

🏆 Awards and Honors

Jiaheng Peng’s research excellence has been acknowledged with the Best Paper Award at the 1st Open Source Technology Academic Conference (2024). His publications in Q1-ranked journals further highlight his academic impact. His continuous contributions to the Open Source community demonstrate his dedication to advancing research and innovation in Open Source evaluation.

🔬 Research Focus

Jiaheng’s research primarily addresses the limitations of traditional Open Source data insight metrics. His work connects Open Source datasets with their corresponding academic papers, evaluating their significance through citation network mining. By bridging Open Source data with academic insights, he introduces novel evaluation methodologies that enhance dataset usability and long-term impact analysis. His research also extends into Aspect-Based Sentiment Classification, employing advanced Graph Attention Networks and NLP models to extract meaningful insights.

📌 Conclusion

Jiaheng Peng is a rising scholar in the Open Source and NLP domains, with a keen focus on dataset evaluation, citation network analysis, and sentiment classification. His academic contributions, recognized through prestigious awards and top-tier publications, establish him as a promising researcher dedicated to advancing Open Source dataset analytics. With a commitment to scientific excellence, his work continues to influence the global research community.

📚 Publication Top Notes

Evaluating long-term usage patterns of open source datasets: A citation network approach
BenchCouncil Transactions on Benchmarks, Standards and Evaluations (2025)
Cited by: Pending

DRGAT: Dual-relational graph attention networks for aspect-based sentiment classification
Information Sciences (2024)
Cited by: Pending

Data Driven Visualized Analysis: Visualizing Global Trends of GitHub Developers with Fine-Grained Geo-Details
International Conference on Database Systems for Advanced Applications (2024)
Cited by: Pending

ASK-RoBERTa: A pretraining model for aspect-based sentiment classification via sentiment knowledge mining”
Knowledge-Based Systems (2022)
Cited by: Multiple researchers in NLP and sentiment analysis