Ms. Yin ZiJuan | artificial intelligence | Best Researcher Award

Ms. Yin ZiJuan | artificial intelligence | Best Researcher Award

Ms. Yin ZiJuan, graduate student, Shanghai University of Engineering Science, China.

Yin Zijuan is a dedicated graduate researcher at the School of Materials Science and Engineering, Shanghai University of Engineering Science. She has cultivated a unique interdisciplinary expertise that bridges materials science with artificial intelligence. Her notable work centers around intelligent surface defect detection using deep learning models. Yin gained international recognition for developing the BBW YOLO algorithm, which improves defect detection accuracy in aluminum profile manufacturing. With a passion for integrating AI into industrial applications, Yin exemplifies the new generation of scholars who are redefining engineering research through innovation, precision, and automation.

Publication Profile

Scopus

🎓 Education Background

Yin Zijuan is currently pursuing her graduate studies at the Shanghai University of Engineering Science, within the School of Materials Science and Engineering. Her academic focus lies in fusing materials engineering with advanced computational methods. During her studies, she developed specialized knowledge in deep learning, computer vision, and image processing as they relate to quality control in industrial materials. Her academic journey is marked by excellence, with her research earning publication in reputable international journals. Yin’s education reflects a strong foundation in both traditional materials science and cutting-edge AI methodologies.

🧪 Professional Experience

As a graduate researcher, Yin Zijuan has contributed to high-impact research projects focused on AI-driven defect detection in industrial materials. Her most distinguished project involved the development and implementation of the BBW YOLO algorithm, which blends Bidirectional Feature Pyramid Networks and attention mechanisms for enhanced image recognition. She has collaborated with institutions like Harbin Institute of Technology and participated in interdisciplinary studies that bridge academia and industry. Through her ongoing work, she aims to revolutionize quality assurance processes in manufacturing by deploying real-time and lightweight neural network systems.

🏆 Awards and Honors

Yin Zijuan has earned increasing recognition in the field of intelligent detection systems. Her research achievements culminated in a significant journal publication in Coatings, a Scopus and SCI-indexed journal, in 2025. This milestone established her as a rising scholar with contributions relevant to both academic and industrial domains. Her work on BBW YOLO has been lauded for its innovation, performance efficiency, and potential impact on industrial automation. Yin is also a nominee for prestigious awards including the Best Scholar Award, Outstanding Innovation Award, and Best Paper Award, all reflecting the excellence of her work.

🔬 Research Focus

Yin Zijuan’s research encompasses a wide spectrum of interdisciplinary themes including materials science, deep learning, and computer vision. Her primary focus is on developing intelligent detection algorithms for identifying surface defects in aluminum profiles. She has pioneered the BBW YOLO model, which integrates BiFPN and BiFormer attention mechanisms with a Wise-IoU v3 loss function. Her innovations improve defect detection accuracy while maintaining high processing speeds and model efficiency. Yin’s work supports the evolution of smart manufacturing and industrial automation, positioning her as a key contributor to the fusion of AI and engineering.

📌 Conclusion

Yin Zijuan exemplifies the future of smart materials research through her fusion of artificial intelligence and industrial materials science. Her work is not only academically rigorous but also practically relevant, addressing real-world problems in manufacturing. From algorithmic innovation to high-impact publication and inter-institutional collaboration, she has demonstrated exceptional promise as a research scholar. With her continued contributions, Yin is poised to lead transformative advancements in intelligent quality control systems. She stands as a worthy nominee for multiple academic honors and awards recognizing innovation, research excellence, and scholarly distinction.

📄 Top Publications Notes

  1. BBW YOLO: Intelligent Detection Algorithms for Aluminium Profile Material Surface Defects

  2. Thermal deformation behavior and microstructural evolution of the rapidly-solidified Al–Zn–Mg–Cu alloy in hot isostatic pressing state

 

 

 

 

 

Prof. Dr. Jörg Schäfer | Machine Learning | Best Researcher Award

Prof. Dr. Jörg Schäfer | Machine Learning | Best Researcher Award

Professor, Frankfurt University of Applied Sciences, Germany

Professor Dr. Jörg Schäfer is a renowned academic and researcher in the field of Computer Science, currently serving at the Frankfurt University of Applied Sciences in Germany. With a distinguished background in mathematics and a dynamic career bridging academia and industry, Dr. Schäfer is celebrated for his expertise in object-oriented programming, distributed systems, databases, and machine learning. His innovative research in artificial intelligence and human activity recognition, paired with decades of experience in technology strategy and complex system architecture, have made him a leading figure in both academic and professional circles.

Publication Profile

🎓 Education Background:

Dr. Schäfer completed his Ph.D. in Mathematics with summa cum laude at Ruhr-Universität Bochum (1991–1993) under the supervision of Prof. Dr. Sergio Albeverio. His doctoral work was part of the elite DFG graduate program “Geometrie und Mathematische Physik” and included an academic travel scholarship to Japan. Before his Ph.D., he earned a diploma in Mathematical Physics with distinction from Ruhr-Universität Bochum (1987–1991), laying the groundwork for his future interdisciplinary research.

💼 Professional Experience:

Dr. Schäfer’s professional career blends deep academic involvement with high-impact industry roles. Since 2009, he has been a professor at Frankfurt University of Applied Sciences, teaching subjects such as object-oriented programming, distributed systems, and machine learning. He is the founding member of the Industrial Data Science (INDAS) research group and serves as Chairman of the B.Sc. Computer Science program. Prior to his academic tenure, Dr. Schäfer held senior positions at Accenture (2005–2009) and Cambridge Technology Partners (2000–2005), where he was responsible for large-scale architecture design, pre-sales, delivery, and enterprise integration strategies. His early career includes project management roles at Westdeutsche Landesbank and a trainee program at Salomon Brothers, as well as scientific assistant roles focused on stochastic analysis.

🏅 Awards and Honors:

Professor Schäfer has received several prestigious accolades throughout his career. Most notably, he was awarded the Hessischer Hochschulpreis in 2022 for excellence in teaching. During his academic formation, he was also a scholar of the Studienstiftung des deutschen Volkes (1987–1991), reflecting his outstanding academic promise from an early stage.

🔬 Research Focus:

Dr. Schäfer’s research is focused on artificial intelligence, machine learning, mobile and distributed systems, and human activity recognition. His work leverages WiFi channel state information (CSI) for device-free activity detection, contributing significantly to the field of pervasive computing. He also has a foundational background in mathematical physics, particularly in Chern–Simons theory and stochastic analysis, which informs his unique approach to computer science problems.

🧩 Conclusion:

With a remarkable blend of academic rigor and real-world application, Professor Dr. Jörg Schäfer stands out as a multifaceted scholar and technology leader. His research continues to shape the future of data science and AI-driven systems, while his dedication to teaching and mentorship inspires the next generation of computer scientists.

📚 Top Publications

  1. Computer-implemented method for ensuring the privacy of a user, computer program product, device
    J Schäfer, D Toma
    US Patent 8,406,988, 2013
    Cited by: 237 articles

  2. Device free human activity and fall recognition using WiFi channel state information (CSI)
    N Damodaran, E Haruni, M Kokhkharova, J Schäfer
    CCF Transactions on Pervasive Computing and Interaction, 2020
    Cited by: 109 articles

  3. Human activity recognition using CSI information with nexmon
    J Schäfer, BR Barrsiwal, M Kokhkharova, H Adil, J Liebehenschel
    Applied Sciences, 2021
    Cited by: 75 articles

  4. Abelian Chern–Simons theory and linking numbers via oscillatory integrals
    S Albeverio, J Schäfer
    Journal of Mathematical Physics, 1995
    Cited by: 53 articles

  5. A rigorous construction of Abelian Chern-Simons path integrals using white noise analysis
    P Leukert, J Schäfer
    Reviews in Mathematical Physics, 1996
    Cited by: 43 articles

  6. Fall detection from electrocardiogram (ECG) signals and classification by deep transfer learning
    FS Butt, L La Blunda, MF Wagner, J Schäfer, I Medina-Bulo, et al.
    Information, 2021
    Cited by: 40 articles

  7. Device free human activity recognition using WiFi channel state information
    N Damodaran, J Schäfer
    2019 IEEE SmartWorld Conference
    Cited by: 37 articles

  8. Cloud computing – Evolution in der Technik, Revolution im Business
    G Münzl, B Przywara, M Reti, J Schäfer, et al.
    Berlin: BITKOM, 2009
    Cited by: 37 articles

 

Dr. Aiai Wang | Machine Learning | Best Researcher Award

Dr. Aiai Wang | Machine Learning | Best Researcher Award

Doctoral student, University of Science and Technology Beijing, China

Ai-Ai Wang is a passionate and dedicated young researcher born in March 1998 in Langfang, Hebei Province, China. A proud member of the Communist Party of China (CPC), she is currently based at the University of Science and Technology Beijing (USTB), where she serves as the Secretary of the 16th Party Branch, 4 Zhaizhai. With a solid academic foundation in mining and civil engineering, Ai-Ai has excelled in both academic and research spheres, contributing significantly to digital and intelligent mining technologies. Her work emphasizes physical dynamics in tailings sand cementation and filling, showing strong potential for innovation in sustainable mining practices.

Publication Profile

Scopus

🎓Education Background:

Ai-Ai Wang completed her Bachelor of Science in Mining Engineering from North China University of Science and Technology in 2021. She further pursued her Master’s degree in Civil Engineering at the University of Science and Technology Beijing (2021.09–2024.06), affiliated with the School of Civil and Resource Engineering.

🛠️Professional Experience:

Alongside her academic journey, Ai-Ai has undertaken significant responsibilities, currently serving as Secretary of the Party Branch at USTB. Her leadership extends beyond administration into collaborative research projects, software development, and patent contributions under renowned mentors such as Prof. Cao Shuai. She has played vital roles in developing intelligent systems for mining operations, reinforcing her multidisciplinary strengths.

🏅Awards and Honors:

Ai-Ai Wang has been recognized extensively for her academic and research excellence. Notable accolades include the “Top Ten Academic Stars” at USTB (2023), a National Scholarship for Master’s Degree Students (2022), the prestigious Taishan Iron and Steel Scholarship (2023), and multiple First-Class Academic Scholarships from USTB. She was twice named an Outstanding Three-Good Graduate Student and honored by her school as an outstanding individual. Moreover, she has received scientific awards such as the First Prize from the China Gold Association and the Second Prize from the China Nonferrous Metals Industry for her impactful contributions to green and safe mining.

🔬Research Focus:

Ai-Ai Wang’s research is rooted in advanced techniques of tailings sand cementation, intelligent filling systems, and digital mining. She explores the structural stability of backfills, application of nanomaterials, and CT-based 3D modeling of internal structures. Her work blends civil engineering, environmental safety, and digital innovation, aiming to enhance sustainability and efficiency in modern mining. She also contributes to cutting-edge software systems and patented technologies for mining design and operation support.

📝Conclusion:

Ai-Ai Wang stands out as a promising engineer and researcher whose academic achievements, professional dedication, and innovative research in intelligent mining set a high standard for future civil and mining engineers. Her trajectory reflects not just technical mastery but a deep commitment to sustainable and smart engineering solutions in the mining industry.

📚Top Publications with Details

Effect of height to diameter ratio on dynamic characteristics of cemented tailings backfills with fiber reinforcement through impact loading – Construction and Building Materials, 2022
Cited by: 26 articles
Influence of types and contents of nano cellulose materials as reinforcement on stability performance of cementitious tailings backfill – Construction and Building Materials, 2022
Cited by: 20 articles
Quantitative analysis of pore characteristics of nanocellulose reinforced cementitious tailings fills using 3D reconstruction of CT images – Journal of Materials Research and Technology, 2023
Cited by: 12 articles

 

Mrs. Edna Rocio Bernal Monroy | Machine Learning | Best Researcher Award

Mrs. Edna Rocio Bernal Monroy | Machine Learning | Best Researcher Award

UNAD, Colombia

Dr. Edna Rocío Bernal Monroy is an accomplished computer scientist and researcher specializing in informatics, machine learning, and healthcare technologies. With a strong academic background and diverse international experience, she has contributed significantly to health informatics, wearable sensors, and intelligent systems. Dr. Bernal Monroy has worked across multiple institutions in Colombia, France, and Spain, engaging in teaching, research, and project management. Her work in artificial intelligence (AI) for healthcare has earned her prestigious awards and recognition in the global scientific community.

Publication Profile

🎓 Education

Dr. Bernal Monroy holds a Ph.D. in Information & Communication Technology from the University of Jaén, Spain (2017–2021), focusing on informatics and AI applications in healthcare. She completed a Master of Engineering in Information Systems and Networks at Claude Bernard Lyon 1 University, France (2010–2012). Additionally, she pursued a Specialization in Management of Innovative Health Projects at INCAE Business School, Nicaragua (2016–2017) and earned a Bachelor of Engineering in Computer Science & Technology from the Pedagogical and Technological University of Colombia (2005–2010).

💼 Experience

Dr. Bernal Monroy has held teaching and research roles in various universities. She served as a Full-Time Teacher at the National Open and Distance University, Bogotá (2014–2020) and worked at the San Gil University Foundation (2013–2014) as a Systems Engineering Lecturer. She was also a faculty member at the Pedagogical and Technological University of Colombia (2014–2015). Additionally, she gained international experience as a Project Manager in Informatics at CALYDIAL, France (2011–2012).

🏆 Awards and Honors

Dr. Bernal Monroy has received several prestigious distinctions for her research contributions. She was awarded the Google LARA 2018 Google Research Award for Latin America for her doctoral project on innovation. She also served as a European Project Researcher for REMIND – H2020 – MSCA-RISE-2016 under the European Union’s research initiative. Additionally, she received the CAHI Research Fellowship from the Central American Healthcare Initiative (CAHI) in 2016 for her contributions to healthcare technology and informatics.

🔬 Research Focus

Dr. Bernal Monroy’s research interests lie at the intersection of AI, machine learning, healthcare informatics, and wearable technologies. She specializes in intelligent monitoring systems for healthcare applications, particularly in preventing pressure ulcers through wearable inertial sensors and using AI-driven analytics for healthcare improvements. Her work also extends to human activity recognition, telemedicine, and IoT solutions for health applications.

🏁 Conclusion

Dr. Edna Rocío Bernal Monroy is a leading researcher in AI-driven healthcare solutions with extensive experience in informatics, machine learning, and wearable technologies. Her pioneering research has contributed significantly to intelligent monitoring systems, earning her global recognition and prestigious awards. Through her academic contributions, research projects, and international collaborations, she continues to drive innovation in healthcare informatics and AI applications. 🚀

📚 Publications

Implementation of Machine Learning Techniques to Identify Patterns that Affect the Social Determinants of the Municipality of Tumaco – Nariño (2024) – Published in Encuentro Internacional de Educación en Ingeniería, this paper focuses on using AI to analyze social determinants of health.

Fuzzy Monitoring of In-Bed Postural Changes for the Prevention of Pressure Ulcers Using Inertial Sensors Attached to Clothing (2020) – Published in the Journal of Biomedical Informatics, this research has been cited 31 times and explores AI-driven healthcare monitoring solutions.

Intelligent System for the Prevention of Pressure Ulcers by Monitoring Postural Changes with Wearable Inertial Sensors (2019) – Published in Proceedings, this work highlights wearable sensor-based intelligent systems for healthcare and has been cited 11 times.

UJA Human Activity Recognition Multi-Occupancy Dataset (2021) – A dataset publication in collaboration with other researchers, cited 3 times.

Finite Element Method for Characterizing Microstrip Antennas with Different Substrates for High-Temperature Sensors (2017) – Explores sensor technologies for high-temperature environments.

Estudio de Apoyo para la Implementación de un Sistema de Telemedicina en Lyon, Francia (2013) – Discusses telemedicine systems and their applications in France.

sicheng tian | Natural Language Processing Award | Best Researcher Award

Dr. sicheng tian | Natural Language Processing Award | Best Researcher Award

Student, Harbin engineering university, China

👨‍💻 Dr. Sicheng Tian is a fourth-year Ph.D. candidate at the College of Computer Science and Technology, Harbin Engineering University, China. His academic journey has been marked by excellence, progressing seamlessly from bachelor’s to master’s to doctoral studies at the same institution. Specializing in natural language processing (NLP), Dr. Tian has made notable contributions to reverse dictionary tasks, publishing two JCR Q1 papers and actively driving advancements in this niche area. He is a member of the prestigious China Computer Federation (CCF), reflecting his commitment to the computer science community.

Publication Profile

Scopus

Education

🎓 Dr. Sicheng Tian has pursued his entire academic career at Harbin Engineering University, excelling through bachelor’s, master’s, and Ph.D. programs. He is currently in his fourth year as a doctoral candidate, focusing on innovative approaches to reverse dictionary tasks in NLP.

Experience

💼 Dr. Tian has a strong background in research, contributing to multiple national-level projects, including those funded by the National Natural Science Foundation of China. His expertise extends to the development of cutting-edge models and datasets, driving advancements in natural language processing.

Research Interests

🔍 Dr. Tian’s primary research interests lie in reverse dictionary tasks within the field of natural language processing. He is particularly focused on developing models using methods such as multitask learning and multimodal information fusion, aiming to enhance computational understanding and performance.

Awards

🏆 Dr. Tian has achieved recognition for his research, including the successful publication of two high-impact JCR Q1 papers. His contributions to NLP and participation in national projects highlight his significant achievements in the field.

Publications

A prompt construction method for the reverse dictionary task of large-scale language models.” Engineering Applications of Artificial Intelligence 133 (2024): 108596. Cited by articles.

RDMTL: Reverse dictionary model based on multitask learning.” Knowledge-Based Systems 296 (2024): 111869. Cited by articles.

RDMIF: Reverse Dictionary Model Based on Multi-modal Information Fusion.” Neurocomputing (2024, In Press).

 

Fida Ullah | Natural language Processing | Data Science Contribution Award

Mr.Fida Ullah | Natural language Processing | Data Science Contribution Award

PhD Student, Institute of politechnical National, Mexico

🎓 Fida Ullah is a dedicated PhD student in Computer Science at Instituto Politécnico Nacional, Mexico, specializing in Named Entity Recognition (NER) and machine learning, with a deep passion for advancing Natural Language Processing (NLP) for low-resource languages. His expertise spans deep learning and transformer models, and he is skilled in applying these techniques to various text analysis challenges. Fida has published extensively in reputable journals and actively engages in the latest NLP developments, making him a promising researcher in this field.

Publication Profile

Google Scholar

Education

📘 PhD in Computer Science – Instituto Politécnico Nacional, Mexico (2022-Present), Thesis: Urdu Named Entity Recognition with Deep Learning
Advisor: Dr. Alexander Gelbukh. M.Sc. in Computer Science – Beijing University of Chemical Technology, China (2018-2021)

Experience

💻 Fida has hands-on experience with Python and essential machine learning libraries like TensorFlow, PyTorch, and Keras. He has worked extensively with deep learning frameworks, focusing on Named Entity Recognition, sentiment analysis, and hate speech detection in low-resource languages. His work has been showcased at international conferences, and he has collaborated with global researchers on NLP projects.

Research Interests

🔍 Fida’s research interests are centered around Natural Language Processing and Named Entity Recognition for low-resource languages, utilizing deep learning, transformer models, and data augmentation techniques. He is also intrigued by advancing explainable machine learning applications for smart city innovations.

Awards and Achievements

🏆 Awards include the CONACYT Scholarship (Mexico) and the Chinese Government Scholarship for his academic excellence and contributions to NLP research.

Publications

Ullah, Fida, Ihsan Ullah, and Olga Kolesnikova. “Urdu Named Entity Recognition with Attention Bi-LSTM-CRF Model.” Mexican International Conference on Artificial Intelligence (2022). Springer Nature Switzerland.

Fida Ullah, Alexander Gelbukh, MT Zamir, EM Felipe Revoron, and Grigori Sidorov. “Enhancement of Named Entity Recognition in Low-Resource Languages with Data Augmentation and BERT Models: A Case Study on Urdu.” Computers, MDPI (2023). https://doi.org/10.3390/computers13100258.

Muhammad Arif, MS Tash, Ainaz Jamshidi, Fida Ullah, et al. “Analyzing Hope Speech from Psycholinguistic and Emotional Perspectives.” Scientific Reports (2024). https://doi.org/10.1038/s41598-024-74630-y.

Fida Ullah, M.Ahmed, MT. Zamir, et al. “Optimal Scheduling for the Performance Optimization of SpMV Computation using Machine Learning Techniques.” IEEE Xplore (2024). https://doi.org/10.1109/ICICT62343.2024.00022.

Alberto Martínez Castro, Jesús, et al. “Suppressor of Cytokine Signaling Members in Lung Adenocarcinoma: Unveiling Expression Patterns, Posttranslational Modifications, and Clinical Significance.” Journal of Population Therapeutics and Clinical Pharmacology 30, no. 18 (2023): 2077-2091.