Prof. Dr. YiSheng Huang | Computer Science | Best Researcher Award

Prof. Dr. YiSheng Huang | Computer Science | Best Researcher Award

Professor, National Ilan University/EE, Taiwan

Dr. Yi-Sheng Huang is a distinguished Professor at National Ilan University, Taiwan, with a remarkable career in Electrical and Electronic Engineering. Holding a Ph.D. from National Taiwan University of Science and Technology (NTUST), he has significantly contributed to Discrete Event Dynamic Systems, Petri Nets, and Intelligent Transportation Systems (ITS). Recognized among the World’s Top 2% Scientists (1960–2023), his expertise spans both theoretical advancements and real-world applications, shaping the future of smart mobility and automation. With leadership roles in academia and international collaborations, Dr. Huang continues to drive impactful research and innovation in the field of intelligent systems. 🚀

Publication Profile

📚 Academic Background

Dr. Yi-Sheng Huang earned his Ph.D. in Electrical Engineering from NTUST in 2001, laying the foundation for his expertise in dynamic systems and intelligent transportation. His commitment to academic excellence led him to various leadership positions, including Chairman of the Department of Electrical Engineering at National Ilan University (2015–2019) and Dean of the Office of Research and Development (2023–2024). He also enriched his global academic experience as a Visiting Professor at the New Jersey Institute of Technology (2008, 2014), fostering cross-border collaborations in intelligent automation. 🎓

🏢 Professional Experience

With over two decades of academic and research contributions, Dr. Huang has completed 30 major research projects and collaborated with industry leaders such as CECI Engineering Consultants, INC., Taiwan. His consultancy work spans 6 completed and 7 ongoing industry projects, demonstrating his ability to bridge theoretical research with practical applications. He is an esteemed member of the IEEE SMC Society and IEEE ITS Society, further solidifying his influence in cutting-edge technological advancements. His extensive publication record includes 114 journal papers indexed in Scopus and SCI, reflecting his commitment to advancing the field of intelligent systems. ⚡

🏆 Awards and Honors

Dr. Huang’s research excellence has earned him a place among the World’s Top 2% Scientists (1960–2023), highlighting his profound impact on electrical engineering and intelligent systems. His work has significantly influenced transportation optimization, making urban mobility smarter and more efficient. As a leading researcher, he continues to push the boundaries of Discrete Event Dynamic Systems and Petri Nets applications, setting new standards in system modeling and control. His contributions have been acknowledged globally, reinforcing his reputation as a pioneering scientist in his field. 🏅

🔬 Research Focus

Dr. Huang’s research revolves around Discrete Event Dynamic Systems, Petri Nets, and Intelligent Transportation Systems (ITS). His work has led to advanced methodologies in traffic flow management, congestion control, and system optimization, improving urban transport networks. By integrating theoretical models with real-world applications, he has contributed to automated decision-making frameworks, enhancing efficiency and sustainability in transportation. His research is instrumental in shaping smart cities and next-generation mobility solutions, fostering safer and more efficient transport ecosystems worldwide. 🚦

🔍 Conclusion

Dr. Yi-Sheng Huang stands at the forefront of intelligent transportation research, driving significant innovations in automation and dynamic systems. His global academic presence, extensive research contributions, and impactful industry collaborations establish him as a leading figure in electrical engineering and intelligent mobility solutions. With a legacy of over 114 publications, numerous research projects, and an enduring influence in academia, Dr. Huang continues to shape the future of intelligent transportation and automated systems. 🌍🚀

📝 Top Publications

A Petri net-based model for real-time traffic control in urban networks.

Optimization of discrete event systems using hybrid Petri nets.

Modeling and performance analysis of ITS using dynamic Petri nets.

Smart transportation planning with discrete event system simulation.

Enhancing automated transport systems using intelligent Petri nets.

 

Zhizhen Chen | Computer Science | Best Researcher Award

Dr. Zhizhen Chen | Computer Science | Best Researcher Award

Senior Lecturer, University of Greenwich, United Kingdom

🎓 Dr. Zhizhen Chen is a dedicated academic professional serving as a Senior Lecturer in Finance at the University of Greenwich since 2017. With a rich background in finance and economics, Dr. Chen brings extensive experience from both academia and industry. His research interests encompass financial markets, risk management, and financial engineering, contributing significantly to several top-tier finance journals. Dr. Chen is also an active peer reviewer and passionate educator, sharing his expertise through innovative courses like Fintech Banking and Financial Engineering and Machine Learning. 🌍📊

Publication Profile

Scopus

Strengths for the Award:

  1. Research Excellence: Dr. Chen has a strong publication record, with multiple articles published in high-impact journals such as “Journal of International Money and Finance” and “Research in International Business and Finance,” both rated 4* in SJR. This demonstrates his capability in producing high-quality research in the field of finance.
  2. Peer Review Activities: He has been a peer reviewer for several prestigious journals since 2016, which showcases his recognition in the academic community and his commitment to advancing knowledge in finance.
  3. Academic and Professional Credentials: Dr. Chen holds a PhD in Finance, is a Fellow of the Higher Education Academy, and has passed CFA Level 1. This combination of academic qualifications and professional certification adds to his credibility and expertise in the field.
  4. Diverse Teaching Portfolio: His teaching experience spans various finance and economics-related courses, demonstrating versatility and a solid understanding of different areas within the field.
  5. Industry Experience: Dr. Chen’s experience as an Investment Analyst and his work with financial institutions provide him with practical insights, enhancing his academic work’s relevance and applicability.
  6. Continuous Professional Development: His commitment to continuous learning and development is evident through his successful completion of the CFA Level 1 exam and his role in ongoing staff development activities.

Areas for Improvement:

  1. Broader Research Impact: While Dr. Chen has a strong record in finance-specific publications, expanding his research impact across other interdisciplinary areas, such as sustainable finance or fintech, could further enhance his profile.
  2. Leadership Roles in Research: Taking on more leadership roles in research projects or academic committees could strengthen his candidacy by demonstrating his influence beyond his individual contributions.
  3. Grants and Funding: Securing research grants or funding is a notable achievement in academia that is not highlighted in the current profile. Pursuing funding opportunities could bolster his research credentials further.

Education

🎓 Dr. Zhizhen Chen holds a PhD in Finance from the University of Glasgow (2018), demonstrating his strong foundation in financial research and education. He is also a Fellow of the Higher Education Academy (2017), a testament to his commitment to teaching excellence, and he earned an MSc in Economics from the University of Wuhan (2012). 📚✨

Experience

🌟 Dr. Chen’s career spans roles as a Senior Lecturer in Finance at the University of Greenwich since 2017, where he excels in teaching and research. His prior experience includes serving as a Research Assistant and Teaching Assistant at the University of Glasgow, and an Investment Analyst at ICBC Wuhan. This blend of academic and industry roles has equipped him with a unique perspective on finance education. 💼💹

Research Focus

🔍 Dr. Chen’s research is focused on financial markets, risk management, securitization, and financial engineering. He actively contributes as a peer reviewer for prestigious journals, including the Journal of International Financial Markets, Institutions & Money, and Finance Research Letters, ensuring rigorous academic standards in the field. 📑🔬

Awards and Honours

🏅 Dr. Chen was recognized as a Fellow of the Higher Education Academy in 2017, highlighting his dedication to teaching excellence. In addition, he passed the CFA Level 1 exam in 2020, demonstrating his commitment to continuous professional development in finance. 🎖️📈

Publication Top Notes

Lin, W., Yan, W., Chen, Z., Xiao, R. (2023). Research on product appearance patent spatial shape recognition for multi-image feature fusion. Multimedia Tools and Applications (SJR 3*).

Xiao, R., Li, G., Chen, Z. (2023). Research progress and prospect of evolutionary many-objective optimization. Control and Decision.

Chen, Z., Liu, H., Peng, J., Zhang, H., Zhou, M. (2022). Securitization and bank efficiency. In: Ferris, S.P., Kose, J., Makhija, A.K., (eds.) Empirical Research in Banking and Corporate Finance. Emerald Publishing Limited.

Conclusion:

Dr. Zhizhen Chen is a suitable candidate for the “Research for Best Researcher Award” due to his significant contributions to the field of finance through high-quality publications, peer-review activities, and professional development. While there is room for growth in interdisciplinary research and leadership roles, his current achievements and ongoing commitment to both academic and professional excellence make him a compelling contender for the award.

Isabel de la Torre | Computer Science | Women Researcher Award

Prof Dr. Isabel de la Torre | Computer Science | Women Researcher Award

Catedrática, Universidad de Valladolid, Spain

Isabel de la Torre Díez, born in 1979 in Zamora, Spain, is a renowned Full Professor at the University of Valladolid. She received her M.S. and Ph.D. degrees in Telecommunication Engineering from the same university in 2003 and 2010, respectively. Isabel’s expertise lies in telemedicine, e-health, m-health, and related fields. She has authored over 250 papers and played a significant role in numerous research projects. Isabel leads the GTe Research Group and is a key figure in the field of telemedicine and e-health. 🌐👩‍🏫

Publication Profile

 

Strengths for the Award

  1. Significant Research Contributions: Isabel de la Torre Díez has published over 250 papers in SCI journals, peer-reviewed conferences, and books. This extensive publication record highlights her impactful research in telemedicine, e-health, and related fields.
  2. Leadership and Innovation: She leads the GTe Research Group at the University of Valladolid and has been involved in creating and coordinating innovative software. Her leadership in advancing telemedicine and e-health applications demonstrates her commitment to improving healthcare through technology.
  3. Research Impact and Recognition: She has been involved in over 100 international conference program committees and has participated in numerous funded research projects. Her involvement as a reviewer for well-known SCI journals further underscores her expertise and influence in her field.
  4. Research and Teaching Excellence: With two research sexenios, she has demonstrated consistent research excellence. Her role in guiding doctoral theses and her contributions to high-impact journals and conferences reflect her high standing in the academic community.
  5. International Collaboration: Her postdoctoral research experiences in Portugal, Spain, and France highlight her international collaboration and mobility, enhancing her global research network and exposure.

Areas for Improvement

  1. Broader Recognition: While her research is extensive, further highlighting any awards or recognitions she has received could strengthen her application. Emphasizing awards or honors related to her research could enhance her candidacy.
  2. Diversity of Research Interests: While her focus is on telemedicine and e-health, demonstrating how her research contributes to a broader range of applications or interdisciplinary areas might strengthen her profile.
  3. Detailed Impact Metrics: Providing specific metrics, such as citation counts, h-index, and impact factors of the journals where she has published, could offer a clearer picture of her research impact.

Conclusion

Isabel de la Torre Díez is a highly qualified candidate for the Research for Women Researcher Award. Her extensive research contributions, leadership in innovative projects, and active participation in international research communities position her as a leading figure in her field. Enhancing her application with additional recognitions and detailed impact metrics could further bolster her candidacy. Overall, her achievements and ongoing contributions to the field of telemedicine and e-health make her a strong contender for the award.

Education 🎓

Isabel de la Torre Díez earned her M.S. and Ph.D. degrees in Telecommunication Engineering from the University of Valladolid, Spain, in 2003 and 2010, respectively. Her education laid a strong foundation for her prolific career in telemedicine and e-health. 🏫📜

Experience 👩‍💼

Isabel de la Torre Díez is a Full Professor in the Department of Signal Theory and Communications and Telematics Engineering at the University of Valladolid. She has authored over 250 papers and coauthored 16 registered innovative software. Isabel has been involved in more than 100 international conference program committees and has participated in 44 funded research projects. She is also a reviewer for renowned journals like the International Journal of Medical Informatics. 🏫📚

Research Focus 🔬

Isabel’s research focuses on the development and evaluation of telemedicine applications, e-health, m-health, EHRs (Electronic Health Records), machine and deep learning, privacy and security, biosensors, QoS (Quality of Service), and QoE (Quality of Experience) in the health field. She has significantly contributed to these areas, particularly in telepsychiatry, teleophthalmology, and telecardiology. 🧠💻

Awards and Honors 🏆

Isabel de la Torre Díez has received numerous accolades throughout her career. She has two research sexenios and coordinates the GTe Research Group and the GIR “Society of Information” group. She has also been recognized for her contributions as a reviewer for prestigious journals and her leadership in various research projects and collaborations. 🌟🏅

Publications 📄

  1. Novel model to authenticate role-based medical users for blockchain-based IoMT devices
    PLOS ONE
    2024-07-10
    DOI: 10.1371/journal.pone.0304774
  2. A Digital Mental Health Approach for Supporting Suicide Prevention: A Qualitative Study
    International Journal of Mental Health and Addiction
    2024-06-21
    DOI: 10.1007/s11469-024-01347-4
  3. A deep learning approach for Named Entity Recognition in Urdu language
    PLoS ONE
    2024
    DOI: 10.1371/journal.pone.0300725
    Cited by 1 article
  4. A Detectability Analysis of Retinitis Pigmentosa Using Novel SE-ResNet Based Deep Learning Model and Color Fundus Images
    IEEE Access
    2024
    DOI: 10.1109/ACCESS.2024.3367977
    Cited by 1 article

 

GAN XU | Computer Science | Best Researcher Award

Mr. GAN XU | Computer Science | Best Researcher Award

PhD. candidate, capital university of economics and business, China

Xu Gan is a Doctoral student at Capital University of Economics and Business, Beijing, specializing in Rural Finance, Financial Theory and Policy, and Supply Chain Finance. With a solid academic background and practical experience, Xu has contributed significantly to research in financial services and blockchain technology. 🏛️📚

Profile

Scopus

 

Education

Xu Gan completed a Master of Finance from Capital University of Economics and Business in Beijing (2018-2021) and a Bachelor of Biotechnology from Beijing Union University (2006-2010). Xu also has an extensive academic background in these fields, providing a strong foundation for research and analysis. 🎓📈

Experience

Xu has actively participated in several high-profile research projects, including the National Social Science Foundation of China’s research on rural financial services and the China Mobile Communication Federation’s blockchain technology applications in finance. Xu was responsible for designing research sub-topics and writing research reports. 📊🔬

Research Interests

Xu Gan’s research interests include Rural Finance, Financial Theory and Policy, and Supply Chain Finance. Xu is focused on improving rural financial services and exploring innovative financial technologies such as blockchain. 🌾💡

Awards

Xu has been recognized for academic excellence with several honors: Beijing Outstanding Graduates (2020), Outstanding Graduate of Beijing Union University (2020), and several awards for excellent papers at various financial and rural finance forums. 🏅📜

Publications

Yang, GZ., Xu, G., Zhang, Y., et al. Financial density of village banks and income growth of rural residents. Economic Issues, 2021, 504(08): 89-94.

Zhang, F., Xu, G., Zhang, XY, Cheng, X. Knowledge mapping analysis of seven decades of rural finance research in China. Rural Finance Research, 2020(01): 10-20.

Zhang, F., Xu, G., Cheng, X. A review of blockchain applications in the financial sector. Technology for Development, 2019, 15(08): 865-871.

Hafiza Sadia Nawaz | Computer Science | Women Researcher Award

Dr. Hafiza Sadia Nawaz | Computer Science | Women Researcher Award

Shenzhen University, China

🎓 Dr. H. Sadia Nawaz is a distinguished researcher and academic in Computer Vision, with a Ph.D. from Ocean University of China. Her work focuses on Temporal Activity Detection using Natural Language. With a background in both teaching and research, she has contributed significantly to the field of computer vision and continues to pursue a career as a postdoctoral researcher. Her extensive knowledge and dedication to the subject make her a valuable asset to any research group.

Profile

Scopus

 

Education

📚 Dr. H. Sadia Nawaz holds a Ph.D. in Computer Science from Ocean University of China, specializing in Temporal Moment Localization using Natural Language. She also completed her Master’s in Information Science and Technology at the University of Sargodha and an MS in Computer Science and Technology with a focus on Cyber Security at the University of Lahore. Her academic background provides a strong foundation for her research and teaching roles.

Experience

💼 Dr. Nawaz has a robust teaching background, having served as a Programming Teaching Assistant at Heriot-Watt University and Ocean University of China, and as a Computer Science Lecturer at Superior University of Lahore and the University of Sargodha. Her roles in academia have honed her skills in teaching, mentoring, and research, contributing to her expertise in computer vision and machine learning.

Research Interests

🔍 Dr. Nawaz’s research interests include Activity Localization in Videos via Language, Temporal Moment Detection, and Natural Language Processing. She is particularly focused on moment detection in complex scenarios and the integration of machine learning methods with computer vision techniques to enhance video understanding and activity localization.

Awards

🏅 Dr. H. Sadia Nawaz has been recognized for her research contributions in the field of computer vision, particularly for her work on Temporal Moment Localization using Natural Language. Her research has been published in high-impact journals, reflecting her expertise and commitment to advancing the field.

Publications

Temporal Moment Localization via Natural Language by Utilizing Video Question Answers as a Special Variant and Bypassing NLP for Corpora

IVTEN – Integration of Visual-Textual Entities for Temporal Activity Localization via Language in Video

Revelation of Novel Paradigm in Temporal Moment Localization by Using Natural Language in Video

Multi-level Edges and Context Arranger Architecture Using Referencing Expressions for Temporal Moment Localization via Natural Language

A Frame-Based Feature Model for Violence Detection from Surveillance Cameras Using ConvLSTM Network

Tidjani Négadi | Computer Science | Best Researcher Award

Dr. Tidjani Négadi | Computer Science | Best Researcher Award

recently retired, Physics Department, Faculty of Exactand Applied Science, University Oran 1 Ahmed Ben Bella, Oran 31100, Algeria,

📅 Born on January 26, 1950, in Tlemcen, Algeria, Tidjani Négadi is a distinguished Maître de Conférence at the Physics Department, Faculty of Exact and Applied Science, University Oran 1 Ahmed Ben Bella, Oran, Algeria. With a profound interest in theoretical and mathematical biology, Négadi has significantly contributed to various fields, especially in exploring the connections between physics and biological systems.

Profile

Google Scholar

Education

🎓 Tidjani Négadi earned his Doctorat de 3ème Cycle in Nuclear Physics in 1976 and a Doctorat d’Etat Es-Science Physiques in Theoretical Physics in 1988, both from the Institut de Physique Nucléaire IN2P3, Université Claude Bernard Lyon-I, France. His extensive education laid the foundation for his interdisciplinary research spanning nuclear physics, theoretical physics, and mathematical biology.

Experience

💼 Négadi’s academic journey began in 1976, teaching Quantum Mechanics and its applications until 1989. He later taught Atomic and Molecular Physics, and Group Theory until 2002, after which he focused solely on research, particularly in Mathematical Biology. His teaching portfolio also includes Special Relativity, Astronomy, and Astrophysics from 2015 to 2018. His editorial roles and contributions to esteemed journals and conferences highlight his expertise and dedication to advancing scientific knowledge.

Research Interests

🔬 Négadi’s research interests are vast and interdisciplinary, focusing on the mathematical modeling of biological systems, particularly the genetic code. He has explored the symmetries in the genetic code, the use of Fibonacci and Lucas numbers, and the application of quantum-like approaches to biological systems. His work bridges the gap between physics and biology, offering novel insights into genetic information and its underlying structures.

Awards

🏆 Tidjani Négadi’s contributions to science have been recognized with several prestigious awards and honors. He has served as a member of the Executive Board and Advisory Board of the International Symmetry Association (ISA) and the Advisory and Editorial Board of NeuroQuantology. His role as a guest editor for various special issues in prominent journals showcases his leadership in the scientific community.

Publications

1976: Lifetimes of levels in 64Zn from Doppler shift measurements via 61Ni(a,n) 64Zn reaction, Phys. Rev. C13, cited by 10 articles.

1983: On the connection between the hydrogen atom, and the harmonic oscillator, Lett. Nuovo Cimento, cited by 15 articles.

1983: On the connection between the hydrogen atom, and the harmonic oscillator: the continuum case, J. Phys. A16, cited by 12 articles.

1984: Connection between the hydrogen atom, and the harmonic oscillator: the zero-energy case, Phys. Rev. A29, cited by 9 articles.

1984: Hydrogen atom in a uniform electromagnetic field as an anharmonic oscillator, Lett. Nuovo Cimento, cited by 7 articles.

HaiTian Chen | Computer Science | Best Researcher Award

Ms. HaiTian Chen | Computer Science | Best Researcher Award

College of Science, North China University of Science and Technology, China

Chen HaiTian is a dedicated researcher in the field of Cyberspace Security from China. Born in December 1998, Chen has made significant strides in federated learning, privacy preservation, and cybersecurity. His contributions span multiple peer-reviewed journals and patents, showcasing his commitment to advancing technology and safeguarding digital spaces.

Profile

ORCID

 

Education

Chen HaiTian holds a major in Cyberspace Security, demonstrating his expertise and focus in this critical area of study. His academic background has equipped him with the skills and knowledge necessary to tackle complex cybersecurity challenges and contribute to innovative solutions in the field. 🎓

Research Interests

Chen HaiTian’s research interests focus on federated learning, privacy preservation, and cybersecurity. He is particularly interested in developing robust aggregation techniques to defend against poisoning attacks in federated learning and exploring personalized fair split learning for resource-constrained Internet of Things (IoT). 🔍

Awards

Chen HaiTian has received recognition for his contributions to software development, including the Huali Academy Backstage Management System V1.0 and the DC Early Warning System V1.0. His work has been registered with computer software registration numbers, showcasing his achievements in developing innovative solutions for network management and security. 🏆

Publications

Chen, H.; Chen, X.; Peng, L. (2023). FLRAM: Robust Aggregation Technique for Defense Against Byzantine Poisoning Attacks in Federated Learning. Electronics. Cited by Electronics.

Chen, H.; Chen, X.; Peng, L. (2024). Personalized Fair Split Learning for Resource-Constrained Internet of Things. Sensors, 24, 88. Cited by Sensors.

Chen, H., Chen, X., Ma R., et al. (2024). A federated learning privacy preserving approach for remote sensing data. Computer Applications. Cited by Computer Applications.

Chen, H., Chen, X. (2023). A Robust Aggregation Technique for Poisoning Attack Defense in Federated Learning. Cited by Journal.

Xu C., Zhang S., Chen H., et al. (2024). A federated learning approach based on adaptive differential privacy and customer selection optimization. Computer Applications. Cited by Computer Applications.

Peng L., Zhang S., Chen H., et al. (2023). Clustered federated learning based on improved CFSFDP algorithm. Journal of North China University of Science and Technology (Natural Science Edition). Cited by NCUST.

Qiang Li | Computer Science | Best Researcher Award

Mr. Qiang Li | Computer Science | Best Researcher Award

Lecturer, Qingdao University, China

Dr. Li Qiang is an experienced lecturer in computer science with a PhD in Engineering. He specializes in high-performance computing and has a strong background in both teaching and research. Committed to fostering academic excellence and technological innovation, Dr. Li has been a dedicated educator and researcher at Qingdao University since 2015.

Profile

ORCID

 

Education 🎓

PhD in Engineering: University of the Chinese Academy of Sciences, Computer Network Information Center (2010-2014), Advisor: Lu Zhonghua. Master’s in Information Science and Engineering: Shandong University of Science and Technology (2007-2010), Advisor: Zhao Maoxian. Bachelor’s in Education: Qingdao University (2003-2007).

Experience 👨‍🏫

Lecturer at Qingdao University, School of Computer Science and Technology (January 2015-Present). Teaching undergraduate and graduate courses in computer science. Supervising student research projects and theses. Conducting research in high-performance computing. Published 12 research papers in journals and conferences. Granted 2 patents.

Research Interests 🔬

Dr. Li Qiang’s research interests lie in high-performance computing, particularly in the optimization and parallel implementation of numerical simulations and the development of new computational frameworks. His work focuses on enhancing computational efficiency and scalability in large-scale scientific computations.

Awards 🏆

Dr. Li Qiang has been recognized for his contributions to the field of high-performance computing through multiple publications and patents. His innovative work has led to advancements in computational methods and has garnered attention in the academic community.

Publications 📄

Optimization Research of Heterogeneous 2D-Parallel Lattice Boltzmann Method Based on Deep Computing Unit. Appl. Sci. 2024, 14, 6078.

Heterogeneous Parallel Implementation of Large-Scale Numerical Simulation of Saint-Venant Equations. Appl. Sci. 2022, 12, 5671. Cited by 6

The Study of Parallelization of SWAT Hydrology Cycle. The 32nd ACM International Conference on Supercomputing, Beijing, 2018. [Cited by 3]

A New Parallel Framework of Distributed SWAT Calibration. Journal of Arid Land, 2015, 7(1): 122-131. [Cited by 7]

Parallel Simulation of High-Dimensional American Option Pricing Based on CPU VS MIC. Concurrency and Computation: Practice and Experience, 2014, 27(5): 1110-1121. [Cited by 5]