Cornelia-Aurora Győrödi | Artificial Intelligence | Research Excellence Award

Prof. Dr. Cornelia-Aurora Győrödi | Artificial Intelligence | Research Excellence Award

Professor | University of Oradea | Romania

Prof. Dr. Győrödi Cornelia Aurora is an accomplished researcher in computer science and information technology, specializing in databases, big data management, cloud computing, data mining, web mining, expert systems, and artificial intelligence applications for decision support. Her work focuses on optimizing SQL and NoSQL systems, enhancing cloud database security, and leveraging AI and machine learning for large-scale data analysis. She has contributed extensively to international research projects, authored numerous peer-reviewed publications, and serves as a reviewer and editor for leading journals and conferences. Her expertise positions her as a prominent candidate for recognition in computing, IT innovation, and data-driven research excellence.

Citation Metrics (Scopus)

400

300

200

100

50

10

0

Citations
349

Documents
41

h-index
9

       🟦 Citations   🟥 Documents   🟩 h-index


View Scopus Profile
View ORCID Profile
View Google Scholar Profile

Featured Publications

Assist. Prof. Dr. Mohanned M. H. AL-Khafaji | Artificial Intelligence | Best Researcher Award

Assist. Prof. Dr. Mohanned M. H. AL-Khafaji | Artificial Intelligence | Best Researcher Award

Engineering | University of Technology | Iraq

Dr. Mohanned Mohammed Hussein Al-Khafaji is an accomplished researcher and academic leader in production engineering, specializing in intelligent manufacturing systems, laser material processing, neural network modeling, and fuzzy logic control applications. As Dean of the College of Production Engineering and Metallurgy at the University of Technology, Baghdad, his research integrates computational modeling, automation, and artificial intelligence to enhance production efficiency and precision engineering. He has made significant contributions to the development of computer-controlled manufacturing systems, laser-based material processing, and predictive modeling using advanced algorithms. His work on CO₂ laser processing, neural network-based machining analysis, and hybrid intelligent systems has advanced industrial automation and smart manufacturing processes. Dr. Al-Khafaji’s research also explores mechatronics, robotic systems, and additive manufacturing, emphasizing simulation tools like Abaqus, COMSOL Multiphysics, and MATLAB. His scientific output reflects substantial academic influence, with 15 Scopus-indexed documents, 41 citations from 37 documents, and an h-index of 3. On Google Scholar, he has accumulated 125 citations, an h-index of 6, and an i10-index of 4, underscoring his growing impact in engineering research.

Profile

Scopus | ORCID | Google Scholar

Featured Publications

Al-Khafaji, M. M. H., & Hubeatir, K. A. (2021). CO2 laser micro-engraving of PMMA complemented by Taguchi and ANOVA methods. Journal of Physics: Conference Series, 1795(1), 012062.

Al-Khafaji, M. M. H. (2018). Neural network modeling of cutting force and chip thickness ratio for turning aluminum alloy 7075-T6. Al-Khwarizmi Engineering Journal, 14(1), 67–76.

Khayoon, M. A., Hubeatir, K. A., & Al-Khafaji, M. M. (2021). Laser transmission welding is a promising joining technology technique – A recent review. Journal of Physics: Conference Series, 1973(1), 012023.

Momena, T. F. A., Mohammed, M. M. H., & Al-Khafaji, M. M. H. (2023). Smart robot vision for a pick and place robotic system. Engineering and Technology Journal, 40(6), 1–15.

Shaker, F., Al-Khafaji, M., & Hubeatir, K. (2020). Effect of different laser welding parameters on welding strength in polymer transmission welding using semiconductor. Engineering and Technology Journal, 38(5), 761–768.*

Avraham Lalum | Machine Learning | Best Researcher Award

Mr. Avraham Lalum | Machine Learning | Best Researcher Award

PhD | University of Córdoba | Israel

Avraham (Avi) Lalum is a distinguished legal scholar and researcher specializing in the intersection of real estate law, artificial intelligence, and conflict resolution. His research explores advanced AI-driven models for risk management in real estate transactions, integrating decision-oriented mediation (DOM), behavioral analytics, and deep learning to enhance investment decision frameworks. Lalum’s scholarly contributions bridge the gap between legal regulation and computational modeling, offering innovative methodologies for explainable AI in property law, negotiation, and human–machine interaction. His studies emphasize how artificial intelligence can simulate human reasoning to mitigate financial risk and promote fairness in high-stakes negotiations. His works are widely recognized in Scopus and Web of Science-indexed journals, contributing significantly to the fields of law, data science, and behavioral AI. With a growing academic impact reflected in over 300 citations and an h-index of 6 on Scopus (and 9 on Google Scholar), Lalum’s publications demonstrate both theoretical depth and practical application in LegalTech and AI ethics.

Profile

ORCID

Featured Publications 

Lalum, A., López del Río, L. C., & Villamandos, N. C. (2024). Synthetic reality mapping of real estate using deep learning-based object recognition algorithms. SN Business & Economics, Springer.
Lalum, A., Caridad López del Río, L., & Ceular Villamandos, N. (2025). Multi-dimensional AI-based modeling of real estate investment risk: A regulatory and explainable framework for investment decisions. Mathematics, MDPI.

 

Assist. Prof. Dr. Mehtab Alam | Artificial Intelligence | Best Researcher Award

Assist. Prof. Dr. Mehtab Alam | Artificial Intelligence | Best Researcher Award

Assist. Prof. Dr. Mehtab Alam |Assistant Professor | Delhi University | India

Dr. Mehtab Alam is an accomplished IT professional and academic specializing in Artificial Intelligence (AI), Internet of Things (IoT), Cyber Forensics, and Information Security. His research primarily focuses on developing AI-based smart IoT frameworks for intelligent healthcare systems, with a strong emphasis on predictive modeling, machine learning integration, and cloud-based data analytics. His scholarly contributions demonstrate a multidisciplinary approach combining computer science, data-driven healthcare innovation, and digital transformation. He has explored diverse research areas including smart city technologies, blockchain applications in e-governance, cybersecurity frameworks, and the application of swarm intelligence in network optimization. Dr. Alam has published extensively in reputed international journals and conferences, contributing to advancements in AI-driven sustainable systems and smart healthcare solutions. His works reflect technical depth and practical applicability, addressing modern challenges in digital infrastructure, public health informatics, and secure communication systems. He has authored 15 Scopus-indexed publications, with 30 Scopus citations and an h-index of 4. On Google Scholar, his research has received 256 citations with an h-index of 10 and an i10-index of 11, showcasing his growing academic influence.

Publication Profile

Scopus | ORCID | Google Scholar

Featured Publications

Alam, M., Khan, E. R., Alam, A., Siddiqui, F., & Tanweer, S. (2023). The DIABACARE CLOUD: Predicting diabetes using machine learning. Acta Scientiarum Technology, 46(1).

Alam, M., Khan, I. R., Alam, A., Siddiqui, F., & Tanweer, S. (2023). Smart healthcare: Making medicine intelligent. Journal of Propulsion Technology, 44(3).

Alam, M., Khan, R., Alam, A., Siddiqui, F., & Tanweer, S. (2023). AI for sustainable smart city healthcare. China Petroleum Processing and Petrochemical Technology Catalyst Research, 23(2), 2245–2258.

Ansari, A. A., Narain, L., Prasad, S. N., & Alam, M. (2022). Behaviour of motion of infinitesimal variable mass oblate body in the generalized perturbed circular restricted three-body problem. Italian Journal of Pure and Applied Mathematics, 47, 221–239.

Alam, M., Parveen, S. (2021). Shipment delivery and COVID-19: An Indian context. International Journal of Advanced Engineering Research and Science, 8(8), 145–154.

Assist. Prof. Dr. Mustaqeem Khan | Artificial intelligence | Best Researcher Award

Assist. Prof. Dr. Mustaqeem Khan | Artificial intelligence | Best Researcher Award

Assist. Prof. Dr. Mustaqeem Khan | Assistant Professor | United Arab Emirates University | United Arab Emirates

Academic Background

Dr. Mustaqeem Khan is a distinguished researcher and academic in the field of Artificial Intelligence and Signal Processing. He earned his Doctorate in Software Convergence from Sejong University, South Korea, where his research focused on emotion recognition using deep learning. He also holds a Master’s degree in Computer Science from Islamia College Peshawar, Pakistan, where he was awarded a Gold Medal for academic excellence, and a Bachelor’s degree in Computer Science from the University of Agriculture, Peshawar. Dr. Khan’s scholarly impact is reflected in his remarkable research record, with Scopus indexing 47 documents and over 2,412 citations, resulting in an h-index of 20. On Google Scholar, his work has gained over 2,934 citations, maintaining an h-index of 21 and an i10-index of 31, positioning him among the top two percentage scientists globally.

Research Focus

His research primarily explores Speech and Audio Signal Processing, Emotion Recognition, and Deep Learning. Dr. Khan’s studies integrate multi-modal data analysis through advanced architectures, such as CNNs and Transformers, for applications in speech emotion recognition, computer vision, and energy analytics.

Work Experience

Dr. Khan serves as an Assistant Professor at the United Arab Emirates University, contributing to teaching, research supervision, and curriculum development. Previously, he worked as a Postdoctoral Fellow and Lab Coordinator at the Mohamed Bin Zayed University of Artificial Intelligence, where he collaborated with the Technical Innovation Institute on drone detection systems and managed multidisciplinary AI research teams. Before that, he gained substantial academic and research experience as a Research Assistant at Sejong University and as a Lecturer at Islamia College Peshawar, mentoring students in core computer science and artificial intelligence subjects.

Key Contributions

Dr. Khan has developed several advanced deep learning models, including hybrid attention transformers, multimodal cross-attention networks, and ensemble architectures for audio-visual recognition tasks. His work has contributed to advancements in emotion recognition, drone-based surveillance, and smart city analytics. He has also participated in major funded projects supported by the National Research Foundation of Korea and the Technology Innovation Institute, UAE.

Awards & Recognition

He has been honored with multiple distinctions, including Best Paper Awards, an Outstanding Research Award during his Ph.D., and recognition as a Gold Medalist for academic performance. His inclusion among the Top 2% Scientists (2023–2024) underscores his exceptional research influence and scholarly excellence.

Professional Roles & Memberships

Dr. Khan is an editorial board member and associate editor for several international journals, including the Annals of Applied Sciences and the European Journal of Mathematical Analysis. He serves as a reviewer for over 35 prestigious journals such as IEEE Access, Applied Soft Computing, and Knowledge-Based Systems, actively contributing to academic quality and peer review.

Profile

Scopus | Google Scholar | ORCID

Featured Publications

Khan, M., Ahmad, J., El Saddik, A., & Gueaieb, W. (2025). Joint Multi-Scale Multimodal Transformer for Emotion Using Consumer Devices. IEEE Transactions on Consumer Electronics.

Khan, M., Tran, P. N., Pham, N. T., & Othmani, A. (2025). MemoCMT: Multimodal Emotion Recognition Using Cross-Modal Transformer-Based Feature Fusion. Nature Scientific Reports.

Khan, M., Ahmad, J., El Saddik, A., & Gueaieb, W. (2024). Drone-HAT: Hybrid Attention Transformer for Complex Action Recognition in Drone Surveillance Videos. Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition.

Khan, M., Kwon, S. (2021). Optimal Feature Selection Based Speech Emotion Recognition Using Two-Stream Deep Convolutional Neural Network. International Journal of Intelligent Systems.

Khan, M., Kwon, S. (2021). Att-Net: Enhanced Emotion Recognition System Using Lightweight Self-Attention Module. Applied Soft Computing.

Impact Statement / Vision

Dr. Mustaqeem Khan envisions advancing AI systems capable of understanding human emotions and behaviors with precision and empathy. His goal is to integrate deep learning and multimodal intelligence into real-world applications that enhance human–machine interaction, healthcare, and smart technologies. His ongoing commitment to innovation continues to shape the future of intelligent computing and global research collaboration.

Cha Joowon | Artificial Intelligence | Best Researcher Award

Mr. Cha Joowon | Artificial Intelligence | Best Researcher Award

Korea Atomic Energy Research Institute | South Korea

Mr. Cha Joowon is a dedicated researcher in the field of artificial intelligence with a particular focus on its application to nuclear energy systems. He is currently part of the Applied Artificial Intelligence Section at the Korea Atomic Energy Research Institute in Daejeon, South Korea, where he contributes to advancing AI-driven solutions for safe and efficient reactor operations. His academic and research journey reflects a strong commitment to combining computer science with nuclear engineering challenges, working on innovative methods to improve decision-making and system reliability within complex technological environments.

Publication Profile

Scopus

Education Background

Mr. Cha Joowon began his academic path in computer engineering at Korea University of Technology and Education, where he developed a strong foundation in computational methods, algorithms, and systems design. After completing his undergraduate studies, he advanced his pursuit of specialized knowledge by enrolling in the integrated M.S.-Ph.D. program at the University of Science and Technology in Daejeon. His focus within this program is artificial intelligence, where he combines theoretical learning with practical applications in the nuclear energy domain, emphasizing innovation in both academic and applied research contexts.

Professional Experience

Building on his academic background, Mr. Cha Joowon joined the Korea Atomic Energy Research Institute in Daejeon, where he works within the Applied Artificial Intelligence Section. His role centers on exploring how artificial intelligence can enhance reactor safety, operational efficiency, and predictive maintenance in nuclear facilities. His current research integrates advanced machine learning and large language models with engineering systems, demonstrating his ability to bridge computational intelligence with real-world industrial applications. This combination of skills reflects both his technical expertise and his ambition to contribute meaningful solutions to complex engineering challenges.

Awards and Honors

While Mr. Cha Joowon is still early in his professional journey, his commitment to excellence and research potential is evident through his academic trajectory and institutional affiliations. His enrollment in a highly competitive integrated doctoral program at the University of Science and Technology highlights his recognition as a promising scholar. Additionally, his affiliation with the Korea Atomic Energy Research Institute places him in an environment of high-level scientific contributions, offering him opportunities to showcase his growing expertise. His ongoing projects signal the potential for future recognition through awards and professional honors.

Research Focus

Mr. Cha Joowon’s research is centered on applying artificial intelligence to nuclear engineering, with particular attention to developing intelligent systems for reactor operation support. His focus includes integrating large language models and advanced computational techniques to enhance operator decision-making, predictive diagnostics, and system optimization. By combining AI innovation with the unique requirements of nuclear technologies, his research aims to provide reliable and practical solutions for the safe and effective operation of reactors. This interdisciplinary approach reflects his dedication to bridging artificial intelligence with one of the most critical areas of energy research.

Publication Notes

  • Large language model agent for nuclear reactor operation assistance
    Published Year: 2025

Conclusion

In summary, Mr. Cha Joowon represents a new generation of researchers working at the intersection of artificial intelligence and nuclear engineering. His academic foundation in computer engineering, advanced studies in AI, and practical contributions at the Korea Atomic Energy Research Institute mark him as an emerging talent with strong potential to shape the future of intelligent nuclear systems. As he continues to publish and contribute to research, his work is expected to influence both academic communities and industrial applications, solidifying his role as a researcher dedicated to innovation and safety in energy technologies.

Mr. Muhammad Tauqeer Iqbal | Machine Learning | Best Researcher Award

Mr. Muhammad Tauqeer Iqbal | Machine Learning | Best Researcher Award

Mr. Muhammad Tauqeer Iqbal , Yangzhou University, China

Iqbal Muhammad Tauqeer is a passionate researcher and master’s student at Yangzhou University, China , specializing in the domain of Machine Learning 🤖. With a solid foundation in both industry and academia, he has combined practical management experience with cutting-edge AI research. His dedication to data science applications and computer vision has led to a notable publication recognized as a best paper, showcasing his potential in the rapidly evolving tech landscape 🌟.

Professional Profile

ORCID

🎓 Education Background

Iqbal is currently pursuing his Master’s degree at Yangzhou University, China 📚, where his academic focus is on machine learning and its applications in computer vision. His academic pursuits have been driven by a commitment to advancing AI-driven solutions in environmental monitoring and digital recognition systems.

💼 Professional Experience

Before his transition into research, Iqbal gained valuable industry experience as an Assistant Production Manager at OPPO Mobile Company Pakistan 📱 for over two years. This role provided him with deep insights into production workflows and industry standards, bridging the gap between theoretical learning and practical application.

🏆 Awards and Honors

Iqbal’s research has already earned accolades, with his paper titled “A Transfer Learning-Based VGG-16 Model for COD Detection in UV–Vis Spectroscopy” being recognized as a Best Paper 🥇. This early recognition is a testament to the impact and novelty of his contributions to AI-powered environmental diagnostics.

🔬 Research Focus

His research interests lie primarily in Machine Learning, Deep Learning, Transfer Learning, and Computer Vision 🧠📊. He is particularly focused on applying these techniques to UV–Vis Spectroscopy and digital display recognition. He is currently working on a second research project that extends his work in pattern recognition and visual AI.

🔚 Conclusion

With a unique blend of industrial management experience and academic rigor, Iqbal Muhammad Tauqeer is emerging as a promising contributor to the field of Artificial Intelligence. His work in machine learning models for environmental monitoring reflects not only his technical skills but also his commitment to impactful innovation 🌍🔍.

📚 Publication Top Note

  1. Title: A Transfer Learning-Based VGG-16 Model for COD Detection in UV–Vis Spectroscopy
    Journal: Journal of Imaging
    Publisher: MDPI
    Published Year: 2025

 

QIANG QU | Artificial Intelligence Award | Best Researcher Award

Prof. QIANG QU | Artificial Intelligence Award | Best Researcher Award

PROFESSOR, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, China

Dr. Qiang Qu is a distinguished professor and a leading researcher in blockchain, data intelligence, and decentralized systems. He serves as the Director of the Guangdong Provincial R&D Center of Blockchain and Distributed IoT Security at the Shenzhen Institutes of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS). Additionally, he holds a professorship at Shenzhen University of Advanced Technology and has previously served as a guest professor at The Chinese University of Hong Kong (Shenzhen). Dr. Qu has also contributed as the Director and Chief Scientist of Huawei Blockchain Lab. With a strong international academic presence, he has held research positions at renowned institutions such as ETH Zurich, Carnegie Mellon University, and Nanyang Technological University. His pioneering work focuses on scalable algorithm design, data sense-making, and blockchain technologies, making significant contributions to AI, data systems, and interdisciplinary studies.

Publication Profile

🎓 Education

Dr. Qiang Qu earned his Ph.D. in Computer Science from Aarhus University, Denmark, under the supervision of Prof. Christian S. Jensen. His doctoral research was supported by the prestigious GEOCrowd project under Marie Skłodowska-Curie Actions. He further enriched his academic journey as a Ph.D. exchange student at Carnegie Mellon University, USA. He holds an M.Sc. in Computer Science from Peking University, China, and a B.S. in Management Information Systems from Dalian University of Technology.

💼 Experience

Dr. Qu has a diverse professional background, reflecting his global expertise. Since 2016, he has been a professor at SIAT, leading groundbreaking research in blockchain and distributed IoT security. He also served as Vice Director of Hangzhou Institutes of Advanced Technology (SIAT’s Hangzhou branch). Prior to this, he was an Assistant Professor and the Director of Dainfos Lab at Innopolis University, Russia. His research journey includes being a visiting scientist at ETH Zurich, a visiting scholar at Nanyang Technological University, and a research fellow at Singapore Management University. He also gained industry experience as an engineer at IBM China Research Lab.

🏅 Awards and Honors

Dr. Qu has received several national and international research grants, recognizing his impactful contributions to blockchain and AI-driven data intelligence. He is a prominent editorial board member of the Future Internet Journal and serves as a guest editor for multiple high-impact journals. As an active contributor to the research community, he has been a TPC (Technical Program Committee) member for prestigious conferences and regularly reviews top-tier AI and data systems journals.

🔬 Research Focus

Dr. Qu’s research interests revolve around data intelligence and decentralized systems, with a strong focus on blockchain, scalable algorithm design, and data-driven decision-making. His work has been instrumental in developing efficient data parallel approaches, AI-driven network analysis, and cross-blockchain data migration techniques. His interdisciplinary contributions bridge AI, IoT security, and geospatial analytics, driving innovation in secure and intelligent computing.

🔚 Conclusion

Dr. Qiang Qu stands as a thought leader in blockchain and data intelligence, combining academic excellence with real-world impact. His contributions to AI-driven decentralized systems and scalable data solutions continue to shape the fields of computer science and IoT security. His extensive research collaborations, editorial roles, and international experience make him a key figure in advancing secure and intelligent computing technologies. 🚀

📚 Publications

SNCA: Semi-supervised Node Classification for Evolving Large Attributed Graphs – IEEE Big Data Mining and Analytics (2024). Cited in IEEE 📖

CIC-SIoT: Clean-Slate Information-Centric Software-Defined Content Discovery and Distribution for IoT – IEEE Internet of Things Journal (2024). Cited in IEEE 📖

Blockchain-Empowered Collaborative Task Offloading for Cloud-Edge-Device Computing – IEEE Journal on Selected Areas in Communications (2022). Cited in IEEE 📖

On Time-Aware Cross-Blockchain Data MigrationTsinghua Science and Technology (2024). Cited in Tsinghua University 📖

Few-Shot Relation Extraction With Automatically Generated Prompts – IEEE Transactions on Neural Networks and Learning Systems (2024). Cited in IEEE 📖

Opinion Leader Detection: A Methodological Review – Expert Systems with Applications (2019). Cited in Elsevier 📖

Neural Attentive Network for Cross-Domain Aspect-Level Sentiment ClassificationIEEE Transactions on Affective Computing (2021). Cited in IEEE 📖

Efficient Online Summarization of Large-Scale Dynamic Networks –  IEEE Transactions on Knowledge and Data Engineering (2016). Cited in IEEE 📖